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Abstract—The special modult setResudue Number System 15
intended to tnplement the long and r muliiplications af
eryptographic and signal processing algorithms. In this paper,
area and power trade-gf of modulo 2 "“ — 1 and module 2" + 1

multipliers based on RNS are prop Ihe proposed module
multipliers are based on the radiv-§ er.it anmd‘mg technigue.
In the proposed modulo 2" — 1 multipliers, the number of partial
products 15 lowered to U 2 2 + 1 for n = § to 64, which is
around 33% reduction over radix—4 Booth encoded multiplier for
n =& to 64.For modulo 2" + Imultiplier,the aggregate bias is
composed of muh?hgr dependent dynamic bias and muliiplier
independent static bias due to hard multiple and modulo-reduced
partial products generation. The total number of partial products

is reduced to L w3 J + 6 for modulo 2" + 1 multiplier. From
synthesis results for module 2" — 1 and module 2 " + 1 based
RNS multipliers constructed from different modulo 2" — 1 and
modulo 2" + 1 multipliers.

Index terms-Booth algortthm, computer writhmetic, multplic-
atign, residue number gystemiRNS).

I INTRODUCTION

High speed digital signal processors and cryptographic cores
are strategically implemented in Fesidue Number System
(BEINS) [11-[6].-The FINS is defined by a vector of k modul,
(mlm2....mk). The moduli set must be pair wise co-prime,
which means that for any pair of moduli, the only conumnon
factor is 1.In EINS, each operand is represented by a list of
itz residues, one for each modulus. EINS implementation is
faster than the TCS counterpart because the computations
are performed im short word-length modulo charmels
without canry propagation between channels. The techniques
such as rmmlti-modulus and multi-function architectures to
minimize the hardware redundancy as well as multi-
threshold voltage and multi-supply v chage designs to lower
the power dissipation hawve been suggested m [E]-[10]. Such
control techniques are intended for algorithm lewel design
space exploration and are applicable to the generic modulo
anthmetic architectures. The early known full-adder based
implementation of modulo 2" — 1 multiplication was
presented in [11] and [12], where no encoding scheme was
used on the multiplier bits and partial products were added
n a regularly structured Camry Sawe adder (CSA) tree. In
[12] and [13], radix-4 Booth encoding was employved and
the mmmber of partial products was reduced to Ln2d +1
and  n'2 q respectively, leading to better owerall area-
delay-power perfonmance, where k4 and Lk J represent
the smallest integer greater than or equal to k and the
greatest integer smaller than or equal to k respectively. The
residues for modulus 2™ + 1 require the n + 1 bits to be
represented in the traditional binary system.

To limit the modulo 2® + 1 arthmetic to n bits the
unconventional mmnber representations have been used
[121[19] The modulo 2% + 1 multiplier using the
diminished-1 number representation have been proposed in
[14]-[18].Bv increasing the radix of Booth encoding scheme
beyond four, the mumber of partial products can be fimther
reduced leading to even greater savings in silicon area and
power dissipation [21]-[23]. Ideally, the radix-2 Booth
encoding reduces the number of partial products to Ln/3 4
+ 1, mplying a maximal reduction of 33% over the radix-4
EBooth encoding. But this reduction m the number of partial
products comes at the expense of increased logic i
generating them. In particular, the computation of three
times the multiplicand, 3X is non-trivial and hence, 3X is
termed the hard multiple of the radix-§ Booth encoded
multiplication scheme. In [24], the mdix-2 Booth encoding

technique was explored for modulo 2% — 1 multiplication for

the first time. The hard mmultiple, [+3X;y, 1 was computed

using -bit Fipple Cany Adders (F.CAs) operating in parallel.
The camry-out bits of the RCAs were not propagated bt
treated as partial produr:r_ bits resulting m a partiallyv-
redundamnt representation of the hard multiple. As the word-
length of the E.CA can be manipulated to match the modulo
2% — 1 mltiplier delay to the BENS delayw, [24] is designed to
exploit the timing slack of the non-critical module 2% — 1
channel in high dynamic range FEINSs based on imbalanced
word-length moduli sets. Our objective is to minimize the
area and power consumption of VLWL multiplication in
FMS based on moduli 2% — 1 and I® + 1. Based on the
preliminary customized adders we proposed mm [253] and
[26]. a new logic cell that operates on the mverted-and-
swapped generate and propagate signal pair is proposed to
further simplify the prefix -computations in the generation of
hard rmiltiples. The proposed modulo 2% — 1 and the modulo
2% + 1 hard multiple generators (HMGs) employ only - logz
n - 1 prefix levels. In the proposed modulo 2% — 1
multiplier, one partial product per radix-8 Booth encoded
multiplier digit is generated. As the hard multiple is
generated in an umbiased fonm, no further comrection tenm is
mcwred. Thus, the number of modulo-reduced partial
products in modulo 2® — 1 nultiplier is loweredto Ln/3 < +
1, which is the best achievable partial product cowat using
radix-8 Booth encoding scheme. For proposed modulo 27 +
1 mmultiplier the aggregate sum of bilasing constants is
divided into multiplier dependent dymamic bias and
multiplier independent static bias. The bias is generated by
hardwinng the Booth encoder outputs and constant ones to
appropnate the bit positions via at most two levels of the
AND gates. The customized hard multiple generators, and
the simple correction term for the modulus 2™ + 1 and fewer
modulo —reduced partial products will improve the area-
power trade-off perforrmance of the proposed modulo
multiphiers [7].
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TABLE I The generation of |2 . gi*z“m can be smplified by virtue of
RADIX-§ BOOTH ENCODING the mumber theoretic properties of modulo 2™ — 1 and modulo
hultiplier bits Signed 2% + 1 arittmetic smmmarized below [17], [18], [24]. 1)
WD VIHEL VH ¥ multiplier digit Property 1: Let X _ denote the one’s conplanent of 3
d: The modulo negation of X 1s given by,
+1 X ifm=2%—-1
1 X lm=
+3 X _+2 ifm=2%+1 3)
0100 2
0101 ) 1) Proparty 2: The module reduction of the binary
cil : weight of _
0110 -2 % in excess ofthe modulusis given #fm=22-1
0111 +4 by, x . 2t
1000 -4 %, 20 = fm=22+1 5]
1001 3 - 2y =X 210
1010 -3
1011 -2 3) Property 3: Let the circular-left-shift, CLS(X ., j) and
1100 -2 complementary circular left shift CCLS (X | j) operations
1101 -1 denote the circular left shift of X by j bit positions where the
1110 -1 j least significant bits (lshs) are not nverted and mverted,
1111 ) respectively. As a corollary of Property 2, the modulo
multiplication of X by a positive power-of-two term, 2 is
II. MODULO-REDUCED PARTIAL PRODUCTS FOR given by,
FADIX-8 BOOTH ENCODED MULTIPLICATION .
CLS(X.j) ifm=2"-1

This section presents the preliminaries of radix-8 Booth i
encoded modulo multiplication using binary represzentation 2K

with dual zeros for module 2® — 1 arthmetic. For simplicity,
all equations are assirned to be modulo-reduced by m, m €
{2® — 1}. Mathematically, the modulo 3™ — 1 nmltiplication
canbe expressed as follows.

CCLS(X .j)—21+1 fm=2+1__ (5

4) Property 4: By Properties 1 and 3. the meodulo
multiplication of X by -2J is given by.

. ¥Y=25 Xy, 2t ifm=27-1 X—.j R
CLS( Ay ifm=2"—-1
Zlm= XY +X+Y
= TE-l % i ) . |2, X |m= . ) )
Wi 2TFE+Y fm=2+1_{1) coLs( X i)+ 2H+1 ifm=2"+1 (6)

LAEIE, . oo Ko AT £ IR e T == it iplica Properties 3 and 4 imply that the module 2°% — 1
multiplier andproduct. respectively [7]. multiplications of X by 2§ and -2 can be efficiently

BEv employing the radix-2 Booth encoding ter_'hnique it can  jmplemented in hardware by CLS operations on X
be used to reduce the multiplier bits, v} o ip signed Similarly.the madula 2% + 1 multiplications by 2 and -27 can
digits. fd%} w/ 3 | By employing the radix 8 Booth be realized by CCLS operations onX with a bias of 20 + 1
encoding, t:he product can be computed from only Ln/3 4 + and on X _ witha biasof2i + 1 respectively. The generation
1 modulo-reduced partial products, XX . d; . 21"m and {13can of(X . 4. 23 mcanbe described by a CLS vector PE; form
be expressed succinctly as follows [7]. =2%_ 1 as shown in Table II and by the sum of 8 CCLS vector FPj and
a pradafinad bias Kj form = 2 + 1 as shown in Table II [7]. Hance,
WLlnmyzd . » . {2 can be further
l'e'-l.‘r A Iy ifm=2"-1 PR, simplifiad to,
Elm = L
¥ nf3d Xog 2 oXev¥ fm=22=1 el - _ ny3-
i=0 & .2 3 ifm =1 I ) (PR k) +X T ifm= 21_
Tl =
TAELE II 5 bnsad B
Module 2% — 1 Reduced Partial Products for Radix-§ Ll Ym=p"+1 -
Booth Encoding: - D
d; ¥ _.d 1% | =PP All moduloreduced partial product expressions, except
0 CLS (0...0_ 3i) +3X | in Tables II can be mmplemented by selective bit
+1 CLS (€, 31) shift and selective bit inversion. The bottleneck | +3X | is
) CLS (X _3i+ 1) conmmonly referred to as the hard multiple of radix-8 Booth
=3 CLS (+3X5" 50) encoded mulupher To minimize its hardware owerhead,
" IS ‘3 - '_;1 : new customized adders are proposed for generating the hard
— LS Ezl{ 11 3_‘:}} rmultiple of radix-8 Beooth encoded module 2™ — 1 and
‘; CIS (= '3!_1) modulo 22+ 1 multiplers.
2 CISQE , 3i+1 ) III. PROPOSED MODULO 28 — 1 AND MODULO 2%+
-3 CLS (#3X)" ..30) 1 HARD MULTIPLE GENERATORS (HMGS):
= CLS(X~,3i+2) Modulus 2% —1:

The module 2® — 1 addition oftwo operands, A and B is
equivalent to ann-bit addition of A B and cgys. [7]. 1e..
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™ ifA+B<2"

13" ifA+B=2"

=A+B T, B}
o

Where c,1s the camry output resulting from the additionof
A and B, As ggq is added to the suim of A and B at the lsh
position, modulo 27— 1 additionis commeonly referred to as
end-around-cany (EAC) addition.
This modula 2® — 1 adder can be implemented by a parallsl-
prefix structure with three operator stages. namely pre-
processingprefix-computation and post-processing  [32],
[33]
The pre-processing stage computes the generate (g,
propagate {p;) and half-sum (hy) bits fortoi=0ton—1.

H=a; b
pi=ait b
hy=a;" b; )

The prefix-computation stage will use the prefix operators
(*) on (g . p;) to calculate the canry bits ¢; for the EAC
addition.

Fori=0ton-1

ci=(g.pi)®. .. ®(20. p0)®(Sn-1.Pn-1)®. . ®(Zis] . Pitl)
_ (10)ywhere(g;.pi) ® (gi-1. Pi-1)=1{8 *Pi - 8-1 . Pi- Pi-1).

The post-processing stage computes the sum bit 5; fori=0
to
n-1,1e,

s=h;" ey (11)
The hard multiple | +3% 7™ _ ] is generated by adding

X=X 201 % 2" and |2X |71 =CLS (X, 1) =
n iy .2 4x, .20

(3) Property 3: For the additionof X and CLS (2, 1),
#

Fo + %) - (Fay - %a2)

= Ho], Hel = Fol i=0
(x1.+ =xp). (%p - Xp1)
Ri- 8i-17 = B0 ¥n-17 B0 1=1
(B + =) - (X1 - X2 .
= Xil. Xil= Sl =t=nl
" ay

Byw applving the property-3 to (10), only n/'2 modified
gensrate- propagate bit pairs (g;* | p;*) arerequired in the
prefix-computation stage ofmodulo 2% — 1 HMG as follows.
G= (™. pi*) ® (8%2. pPi-2)®.. ® (2%0.PT0) ® (8702 . P ¥n-

* @ (g% .p%2)  for even i
=(gl.piT)® (852 P2l ® (g1 PY 1) *(2%0-1. P -
1)
& . @ (g% .5 p¥is) foroddi (13)
where,
. 51 % Bl = Fio. (Rt Ea) i=a0
Hi = z1+8 =30.(%1+Xp.1) i=1
Bt =% (®+ ) =i=n-l
Pi. Pel= Xol + X0 . Xo2 1i=0
Pi = p1.Po= %y ¥ L. Xn-1 i=
Pipil = Xl + Mi. Xl Ei=nl
R ¢ )]
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Figure -1: The Proposed Module 2% — 1 Hard
Multiple Generator forn= 8.

Figure -1 shows the proposed modulo 2™ — 1 hard multiple
generator for n = § [7].The operator “m™ represents the
operations such as OF — AND . AND — OFE |, XOFR gate for
generating g,

pi* . and h; respectively in the preprocessing stage. There are
r log. 14 -1 =2 levels of prefix operators in the prefix

— computation stage. S why

sum bit s5; by the XOF. of hy and ¢j 1 in the post — processing

stage.

Modulus 2%+ 1:

The module 2™ + 1 addition of the two diminished-1
represented operands, A and B is equivalent to an n-bit
addition of A and B along with_€ ... ie., as follows.

S+12%+) = [A+B+ 12"
= |A+B+ Sour|pt e (13,

Where £o;¢ 15 the cany output from the addition of A and B.
As ¢_js added to the sum of A and B at the lsh position,
modulo 2% + 1 addition is called complemertary end around
camry {CEAC) addition. The pre-processing stage and post-
processing stage of the pamallel prefix module 2% + 1 adder
are similar to thosze of the modula 27 - 1 adder except the
camy equation is implemented differently in the prefix-
computationn stage due to CEAC addition from [29],
[30]. The camry equationis computed as follows.

Gi=(gi.p)®...*(20.P0)®*(2n-1.Pn-1)* ... ®(gi+] :Pi—l)‘}
mL

For the modulo 2™ + 1 hard multiple generator, the addends
are expressedas X = %"g 1 % 2 and CCLS (X, 1) =

P oa.2Mt 4+ x, .2% to use the bit comelation
between them. From the property-3,

2. X"y =CCLS(X.1)-1 e )
From the definition of modulo 2™ + 1 additionin equations
}(315} and (17) the sum of X and CCLS (X | 1) is computed

5.

H+2 . H+1+1)1" = 3. X+27" 41 (18}
By the constant bias of 2, the hard nmltiple is
of eliminating this constant bias from the
addition, which will hawve to mcrease the crtical path delay
ofthe hard multiple generator (HMG), thatis merged into
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the modified partial products, as described in the following
section.
(6).Property &: For the addition of X and CCLS (X, 1),

N e T L TR i by i 19)
_{x' + x5 0-xg . X0—y ? .
=xu.x;_l =g fori=1
Pi- iy = (¥i+ Xia) (Xea Xiz)y
X Xz T i Lignl
_ 20)
Tl x5 ) kgl xpy ) _
=_}:n_.xn_,=pu_ fori=1
bi -Piy = o+ %2, -Ge, o2, )
=%, X2 —Pix i<nl
21

Bw intending property-6_the cany equation.c; is computed in
the prefix computation and the mmnber of modified generate
(g;*) bits and propagate {p;*) bits are reduced to n'2 as
showmn below.

& .pi) .
*pile . gnla
*0z . Fivz)

(Q'.r-—z . }}:—Q:I

if1 1= even

ci= [(gi.pide( _ _)e e | 1% {p7 . 900, )
L ]
e (Piya . Hixz) ifi is odd
B ——2D)
Where,
o+ Paoy Xpoa-(xe + Xp2) ifi=0
g T | @mE g T+ xia) #1=1
St 0y TG+ ) fT=siswl
b1 Eaa b Xg.Xg, H10
P = By Py TXat X Xay ifi=1
Pi-Pi-n X+ XX isnl
—(23)

In [26],equation-{22) is implemented by two identical prefix
operators such that input to one of the operators,( !, »/) is
pair-wise swapped and inverted to form input (Pr. - i _ )
for the other gperator. The mumber of dual prefix opemators
required in each prefix level, 1= [ =  log. 4 -1, will
be given by n - 2' +1. To remove the implementation area
andthe mterconn-

Ects, of dual prefix gperators.a modified prefix operator
which computes (& D)@ (& P lapd (Pi_-Yi_ e (P
_s 8 _ ;) from the mputs (& P) and { 4, .7 )using the
fewer number oflogic gatesis proposed.

From equation-(23).for{ &, P )it iz easily checked that,

= SigmdPi_ . Hi_.=P_.

g . 24)

gy )

By intending equation-(24)the outpwt of meoedified prefix
oper-ator. can be conputed as follows i the first prefix
levell = 1.

G PiYelgp, i) =g+ plg. piepg)

={gi g7 -Pi. P -Pj)
P P L - TN P Rl ¢ PR I PRS- PR PR R

=(pi.p; . g, 9 -g; ) 23]

&ipe Manpi )

(S + P8 g PP P+ G P_Ldi_. 80

= a8
U
J}L

oy +pigg

ve g

=

1

a7 PPy Pt aopy

Fig-2: The medified prefix operater
X Xgs X5

V. v__lv_

Lo TERE - A
20 TR R T R B T

[4 5 4 3 2 L [}
Fiz-3: The Proposed Modulo 2% + 1 Hard Multiple
Generator forn=28
The Fig-3 shows the proposed modulo 2% + 1 hard multiple
generator for n = &. The computations are identical to those
of Fig-1 in pre-processing stage and post-processing stage.
We generate the cany signals¢; fori=0ton-1in logz n
q - 1=2 lewvels of prefix opemtors. The dotted line represents
modified generate and propagate signals which have been
pair wise swapped and complemented from the outputs of
pre-processing st-ge, to produce ( Pi_ .« S _ 2 [T]

IV. PROPOSED MODULD 2% -1 AND MODULD 2%+
1 MULTIPLIERS
The expressions of partial products ofthe module 27— 1
and modulo 2% + 1 have beenshown in tables IT and ITI [7].
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TABLE IIT

MODULO 2%+ 1 REDUCED PARTIAL PRODUCTS

FOR RADIX — 8§ BOOTHENCODING
|X.di . 2% =L, PR+ K

4 PP, Ky
+0 |CCLS(0...0,31) -2+
+1 | CCLS (x, 3i) —230 11
+2 [CCLS (X.31+ 1) —z3rt 4
+3 |coLs g +3% 50,30 =23 4+ 1
+4 | CcCLs (X 31+ 2) —2342 4 4
0 | CcCcLs(1...1,39) 2% 4 1
1 [CCLE(X _3i) 23t + 1
2 |CCLS(X _3i+ 13 280+ 4
3 N

CCLS (| +3X |37, 30) 23 4 1
3 |CCLs(X_zi+2) 23T 4

This section will complete the architecture of proposed
mltipllers with circuits for generating and acourmulating the
modulo —Feduced partial products.

Figure-4(a) shows the bit-slice implementation of the radix-
% Booth encoding of Table I

Xij—a3f)mad n

xui—!r'— ijmod

hi-agmod n

X(j—3i—2 mod n
W VI mdi m3i m2:

0 1N

I h g Ry hs iy Ty T T
I |
PP PP Phs

|
Py _rn.l'-‘ul’u Pls PP PPi3 P PPu P

I h'| XN h; h.‘ fh J'r-, h: fiy ﬁ'._.

The generation of PF; in BE., BS and HMG blocks for
moduli 2* — 1 and 2® + 1 are shown in Fgures (3) and
(6)xespectively forn= 8 A group ofnidentical BS blocks is
needed to provide the single PP Espicially for modula 27 +

1 multipher.outputs of the BS blocks at the least-significant
31 bit positions will be mwverted to implement the CCLS
operation.

The modulo reduced partial product acowmrnulation
expressed by (7) differs significantly for module 2% — 1 and
module 27 + 1 multipliers.Since module 2% — 1 addition can
be rrnplemented by the EAC addition.The CSA for its
MPPA is shown in Figure-7 forn = & Besides the bn/3 4 +
3PP, the additional
Lni 4 + 1 biasing constants EK; iz needed to be
aconmilated as expressed n (7) for the radix-8 Booth
encoded modulo 2™ + 1 multiplier. Furthermore, | 3.3 +2 |3®
+ 1 mstead of | 3.3 [3® 4 is generated by the hard multiple
generator given by (22) and described in Figure-3.The
additional bias of 2 will be accounted for by modifying the
PP; and KE; comresponding to Booth encoded digit d; = +£3 as
shown below [7].

Modulo 2*-1 HMG [

T o b T T
[T—H —f T —
B H Bfu 1] a.a R o S ﬁ Bs‘ﬁw

I i
PPs PP

T LT T g o B X Fe &) ks
srwle :Fdia?ﬂ@ﬁﬁiﬂ@ o=

| I I [

PP PPy PP Pt PPn PPn o J"ﬂ

Bl H 5 R Hh 5 3R %7

e e T T [ﬁ:i__ﬁbl_[ ¥
B3 H3 i [ BS B3 5 i
P]P“ I 1 | | C:.

Fig.5. Modulo 2" — 1 PP; generationforn= 8.

Modulo 28+1 HMG

5 md;  m3; m2 ml PRy 5
@ ® S 51
Figure-4 (a) Bit-slice of Booth Encoder (b) Bit-slice of B '_:IB_.‘: " BS ES BS BES BS BE []_‘.1'9
Eooth Selector 3 ] h
PP e PP PP PPu PP o Plw
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Booth Encoder (BE) will produce the =zigned dimt
represented by a sign bit 5 and the one-hot encoded
magnitude bits denoted by m4;, m3;, m2;, andml; fromthe
four consecutive multiplier bits ¥3;42, ¥3i+1. ¥3i, and v3;.1.The
left most bit ofthe BE bit-slicey3i-1 is shared with nght

maost bit of the preceding BE bit-slice w3142 To generate
the PP; vector given by Tables IT and ITI the one hot
encoded bits, ml; to m4; are mtended to select either the

pltiplicand.one- bit shift mulnnhﬁmsi,hﬂm nmltiple or two-
bit shift multiplicand, The sign bit detenmines whether the

selected word needs to be complemented. The bit-slice of the
radix-2 Booth 3elector (BS) is shown in Figure-4(b),where

h; denotes the j-th bit of the hard nmultiple generated
according to the Figure-(1) for modulo 2™ - 1 and the
Figure<(3) for modulo 2%+ 1 multipliers,[7].

TABLE IV MODULO 2In+ 1 REDUCED PARTIAL

h; h_l I'_\ ll!_\ ]i| hll I hu .'li? I X Fl‘g. J"j I|!_1
AHIHTHTH | —p
BHEBHBHBHSHBHE 5 0y
T

Irﬁplr ijﬂF.E- s e M B B e

b h ELELELE I
.J_Lﬂpi 1 ] T
BS IT& : EfS BS = BS 5 1-.‘5'

e s s MPu s e P M

Fig. 6. Modulo 2% +1 PP; generation forn=2.

1P | 6P :
S C IR ¥ 21 [
I‘PF T | | lﬁ"i.l"J'IT’P\t‘| | |PP“{I']|'J'JA

P P a4

P PP FPnfP 1ol

Tl

PRODUCTS FOR MULTIPLIER DIGITS =3 FA ] L EA | A [FA | [Fa] [Fa]
X d .25, .- PP+ K ] l I l T | ]
I'*ar:lll-.l prefic modulo 251 adder
di PR K ]
1.
+ CCLS (| +3X + 2|3%. , 3 —23+l _ a4
3 ¢ 271, 30 Fig.7. Modulo 2%~ 1 reduced partial product
i ulation forn= §.
3 CCLS (43X + 27" .. 30 234 4 2304 —— s R —_—
The rimd.iﬁedﬂi,and](i for di = =3 are shown m the Table ]_E
IV. ]
3. X. 2%
=3 X+2), 257 0 12 2R
=CCLS (3% =24 ., .30) -2%+1 _2.2%
= CCLS (3K + 2% .. 3) -23_ 234+ (26)
TABLE V

DYNAMIC BIAS FOR MULTIPLIER DIGITS

Parallel-grefis modulo 2%

a K KD, =K +2°-1 )
i L.
=0 "13_ L 0 Fig 8. Modulo 2%+ 1 reduced partial product
2l 0 accumulation forn= &.
+1 Minimization by a 5-vanable E- map vields a =m2; v m4,;.1
-1+ ] -15 =m3; ¥V md; c=5.d=(m2; Vmd)V 5 ande ={m3; v
+2 mdi) v 5. So, _ _ _
i A Gk E 3 ED;= {m32; v md;). 24 {m3;v m4{}ﬁ2"“+1 +5. 2""'“_ +
43 (m2; v md) v g) . 237 +(m3; v mdy) v 5) . 25
. I+ 2H_ 23] 27
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3

-0 M +1 JaE=t B applying the Property-2 to the negatively weighted { m2;

-1 2 +1 J mdy) and (m3; v m4;) tenms then we have [7],

-2 Ja=t 4+ ] . . ; i

-3 3 ] g KD; = (L v mdy. 23— 23+ ym3; v mag, 23 23l
3 . . 3i+ . .

4 511 5. 27 m2; v ma) v s 27T + (m3; v md) Vo))

Bv using Propertv-3,module 2% + 1 multiplication by 23
mtroduces the bias of 2%+ 1) K will be divided into two
parts KS;= 23 and KD; = K; — K5, K5, is the static bias
which is specific to the radix of the Booth encoding algorittim
and mdependet of d; and KD is the dynamic bias which is
dependert on d; K and KD for all d; are tabulated in Table W
from the Tables IITand I'V. The fixed ES; will be .
gasily aggregated nto a single constantword Let KD = 23,
— 2B+ e+ 2T d+ 2" ephereahcd e € 10, 1) The troth tableafahcd e with
Baoaolsan ingants 55, ml;, m7;, m3; m; is sivenin the ah]eﬁ'l
Those minternms which are not listed in Table W1 will be the_
don’tcares [7].
TABLE VI
TREUTH TAEBLE FOR BOOLEAN FUNCTIONS
OF ab.c.d.e

~3i+2

- %
For the case ofmod{n . 3) =2 the aggregate sum of KS; and
ED; iz given by,

Lpyzd
B, Ky

kn / - - -
Ei M0 30 (m2vma) 23+ (m3;vmdy) | 23 45 231

KD,
+ Bln 33 ((m2;vmd) v s) 237+ (3 vmdy Vs

a2

d; ED; 5| = |mi| = |mlfalb|lc|de
i H i i m
+H 0 0 1 1 [ 0 glofo]ol @ Sbngad o L o
+1 i ol o | o 0 ololofofe Zizo f.;:izﬂl'_ _‘ﬁl—
+2 -1 0| i 1 i |ifojoalo
= = T S R B e e L —K1+k2+ K3+ Etnsaa (257+ Lasde
. - - Y - ’)
-0 1] o t o | o Jafolafaolo] -(29)
—  Where
1 1] oo | e ololilalo
-2 1] 0 t o Jifoli]1]e Ly d _ _
-3 1] v o lalifi]ol1] BI= Ei—_ﬂ " (m2;v mdy) 27+ (m3; v mdy. 25T
-4 j :3,..__3:,_3,_: 1 [ 0 1 1] 1] 1] 1] g2 = E;-_';;'h (0 m2; v ma) Vs . 23+l ((m3; v md;) v
) 23i+2
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