HIGH SPEED PARALLEL IMPLEMENTATION OF CONVOLUTION AND DECONVOLUTION ALGORITHM USING VEDIC MATHEMATICS

#IGORRE SUDHEER KUMAR – Pursuing M.Tech,
#2 A.VIKRAM –Assistant Professor, Dept of ECE,

SREE CHAITANYA INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR, T.S., INDIA.

Abstract: Convolution and deconvolution provides the mathematical framework for Digital Signal Processing (DSP). They are the most important techniques in Digital Signal Processing. But both operations consume much of time. So our focus to develop more advance and simpler techniques. This paper presents a direct method of computing the discrete linear convolution, circular convolution and deconvolution. The most significant aspect of the proposed method is the development of a multiplier and divider architecture based on Ancient Indian Vedic Mathematics sutras Urdhvatiryagbhyam and Nikhilam algorithm. The implementation of linear convolution and circular convolution using vedic mathematics verified using Modelsim software and analyze on Altera FPGA platform using Quartus 2 software, parameter like area, speed and power will be compared to their implementation using conventional multiplier & divider architectures. Convolver has delay of 17.996 ns when implemented on 90 nm process technology FPGA. It also provides necessary modularity, expandability, and regularity to form different convolutions for any number of bits. The coding is done in VHDL (Very High Speed Integrated Circuits Hardware Description Language) for the FPGA, as it is being increased for variety of computational intensively applications. Simulation and synthesis is done using Xilinx 9.2i.

Index Term: Convolution, Deconvolution, Vedic Mathematics, VHDL.

I.INTRODUCTION

Convolution and deconvolution is frequently used operation in DSP. However, beginners often struggle with convolution and deconvolution because the concept and computation requires a number of steps that are tedious and slow to perform. For engineers, complexity and excess time consumption are always the major concern which motivates us to focus on more advance and simpler techniques. Therefore many of researchers have been trying to improve performance parameters of convolution and deconvolution system using new algorithms and hardware. Vedic Mathematics provides unique solution for this problem. Many engineering application areas use this Vedic Mathematics, especially in signal processing. It has 16 sutras and sub-sutras which cover all the branches of mathematics such as arithmetic, algebra, geometry, trigonometry, statistics etc. Implementation of these algorithms in processors has found out to be advantageous in terms of reduction in power and area along with considerable increase in speed requirements. These Sutras are given in Vedas centuries ago. To be specific, these sutras are described in ATHARVAVEDA The sutras and sub-sutras were reintroduced to the world by Swami Bharati Krishna Tirthaji Maharaja in the form of book Vedic Mathematics sutras, Urdhva Tiryagbhyam or Vertically and Crosswise Algorithm for multiplication is discussed and then used to develop digital multiplier architecture. For division, different division algorithms are studied, by comparing drawbacks and advantages of each algorithm, Nikhilam Algorithm based on vedic mathematics is modified according to need and then used. Convolution is the most important and fundamental concept in signal processing and analysis. Many of researchers have been trying to improve performance parameters of convolution system. One of the factor in performance evaluation of any system is speed. The core computing process in convolution is always a multiplication routine. Faster addition and multiplication are of extreme importance in DSP. Therefore, engineers are constantly looking for boosting performance parameters of it using new algorithms and hardware. After comparative study of different multipliers, Urdhva Tiryagbhyam sutra is shown to be an efficient multiplication algorithm [3][4]. In Ref.[1], convolution is carried out by serial processing. They used only one 4×4 bit Vedic multiplier based on Urdhva Tiryagbhyam sutra. Though hardware is less, delay is more as sixteen multiplications are carried out one by one using only single multiplier. In this paper, convolution of two finite length sequences is computed using Direct method. This method is similar to the multiplication of two decimal numbers, this similarity that makes this method easy to learn and quick to compute [2]. As Vedic multiplier is high speed multiplier among existing multipliers [3][4], Urdhva Tiryagbhyam algorithm from Vedic mathematics is used for 4×4 bit multiplication and to improve speed parallel processing approach is used.

II. BRIEF LITERATURE SURVEY

In Ref.[1], convolution is carried out by serial processing. They used only one 4×4 bit Vedic multiplier based on Urdhva Tiryagbhyam sutra. Though hardware is less, delay is more as sixteen multiplications are carried out one by one using only single multiplier. Direct method for calculating the linear convolution sum of two finite length sequences is easy to learn and perform. The approach is easy to learn because of the similarities to computing the multiplication of two numbers by a pencil and paper calculation. FPGA
implementation is future work [2]. In parallel FIR filter algorithm, the preprocessing, post processing and sub filter matrices can be calculated easily with Matlab. Then, Matlab can be used to automatically generate Verilog code for the hardware implementation of this algorithm [5]. But in automatically generated code there is no control on architecture level. ROM look up tables can be used to implement the computational modules. Multipliers can be realized using memory based approach. Multiplication of two n bit input variables can be performed by ROM table of size 2 with power 2n entries [6]. But this approach is not efficient in area point of view. CRT algorithm minimizes multiplication operation at cost of increase in addition operations [7]. Parallel implementation improves speed [8]. The sutras in Vedic mathematics are easy to understand, easy to apply and easy to remember. Vedic maths is helpful to software developers as it is more scientific than the normal system of mathematics [9]. In [1] Surabh Jain and Sandeep Saini presents a direct method of computing the discrete linear convolution, circular convolution and deconvolution. The approach is easy to learn because of the similarities to computing the multiplication of two numbers. The most significant aspect of the proposed method is the development of a multiplier and divider architecture based on Ancient Indian Vedic Mathematics sutras Urdhvatiryagbhyam and Nikhilam algorithm. The results show that the implementation of linear convolution and circular convolution using vedic mathematics is efficient in terms of area and speed compared to their implementation using conventional multiplier & divider architectures. In [2] Madhura Tilak presents a novel method of implementing linear convolution of two proposed method uses modified design approach by replacing the conventional multiplier by Vedic multiplier internally in the implementations. The proposed method is efficient in terms of computational speed, hardware resources and area significantly. The efficiency of the proposed algorithm is tested by simulations and comparisons with different design approaches. The proposed circuit is also modular, expandable and regular which provides flexibility. In [3] Mrs. Rashmi Rahul Kulkarni, convolution is carried out by serial processing. They used only one 4×4 bit Vedic multiplier based on Urdhva Tiryagbhyam sutra. Though hardware is less, delay is more as sixteen multiplications are carried out one by one using only single multiplier. In this paper, convolution of two finite length sequences is computed using Direct method. This method is similar to the multiplication of two decimal numbers, this similarity that makes this method easy to learn and quick to compute. As Vedic multiplier is high speed multiplier among existing multipliers, Urdhva Tiryagbhyam algorithm from Vedic mathematics is used for 4×4 bit multiplication and to improve speed parallel processing approach is used. In [4] Rashmi K. Lomte (Mrs. Rashmi R. Kulkarni), Prof. Bhaskar P.C proposed deconvolution of two finite length sequences (NXM) using direct method to reduce deconvolution processing time. In this paper, we presented an optimized implementation of deconvolution. This particular model has the advantage of being fine tuned for signal processing. To accurately analyze our proposed system, we have coded our design using the VHDL hardware description language and have synthesized it for FPGA products using ISE. The proposed circuit uses less area and less power.

III. CONVOLUTION

The behavior of a linear, time-invariant discrete-time system with input signal \(x[n] \) and output signal \(y[n] \) is described by the convolution sum. Standard equation for convolution is:

\[
y[n] = \sum_{i=0}^{M-1} h[i] \cdot x[n-i]
\]

This method for discrete convolution is best introduced by a basic example. For this example, let \(f(n) \) equal the finite length sequence \((10 11 9 8) \) and \(g(n) \) equal the finite length sequence \((15 14 12 13) \). The linear convolution of \(f(n) \) and \(g(n) \) is \(y(n) = f(n) \ast g(n) \). This can be solved by several methods, resulting in the sequence \(y(n) = (150 305 419 498 363 213 104) \). This approach for calculating the convolution sum is set up like multiplication where the convolution of \(f(n) \) and \(g(n) \) is performed as shown in fig. 1.

\[
\]

Figure 1. Convolution by Direct Method

As seen in Fig. (1) computation of the convolution sum, the approach is similar to a pencil and paper multiplication calculation, except carries are not performed out of a column [2]. To get convolution of two sequences, where each sequence consist of 4 samples, sixteen partial products are calculated and afterwards they are added to get convolution sequence \(y[n] \). In this paper, Partial products are calculated by using vedic multiplier based on Urdhva Tiryagbhyam algorithm. Here to minimize hardware, width of each input sample is restricted to 4 bit. Hence maximum possible input sample value would be \((1111)_{2} \) or \((15)_{10} \) or \((F) \) h. Multiplier required is \(4 \times 4 \) bit. Each multiplier gives 8 bit long partial product. Convolution outputs \(y[6] \) and \(y[0] \) are direct Partial products. While \(y[5] \) obtained after addition of...
intermediate partial products, like wise remaining outputs need to be obtained. For addition of required partial products different adders are designed and synthesized, fastest one is selected for implementation.

IV. PROPOSED IMPLEMENTATION
Let two discrete length sequences are \(x[n] \) and \(h[n] \). Where \(x[n] = \{a3 a2 a1 a0 \} \) and \(h[n] = \{b3 b2 b1 b0 \} \) are convolved. As each sample is four bit long, each partial product is eight bit long e.g. \(a0b0, a3b0, a3b3 \) all are eight bit long. \(y[n] = x[n] \times h[n] \), in a way as mentioned above. Procedure is rearranged as shown in fig. 2.

Figure 2. Convolution of \(x[n] \) and \(h[n] \)

4 × 4 convolution is implemented in order to keep cost low. This can be extended for N × N convolution.

As shown in fig. 3., 4 bit long samples are applied to 4X4 bit vedic multipliers (V.M.). Output of each vedic multiplier is 8 bit long partial product. Vedic multiplier uses Urdhva Tiryagbhyam algorithm for multiplication. In parallel processing, to generate sixteen partial products, sixteen vedic multipliers are used to boost speed. To perform further operation of addition, all outputs are latched. To produce \(Y1 \) and \(Y5 \) carry look ahead adders (CLA) are used and to generate partial products \(Y2, Y3 \) and \(Y4 \) carry save adders with last stage of ripple carry adder (CSA-RCA) are used. Maximum possible length of \(Y0 \) and \(Y6 \) is 8 bit, while of \(Y1 \) and \(Y5 \) is 9 bit. \(Y2, Y3, Y4 \) are at the most 10 bit long. The design is built in VHDL and implemented on an FPGA.

Figure 3. Block Diagram for convolution

As 4 X 4 bit multiplication can be achieved using 2 X 2 bit. Let \(\text{Number1}= a0 = (1101)_2 \) and \(\text{Number2}= b0 = (1010)_2 \). Split each number into two groups. \(a0 = \{(g1=11)(g0=01)\}, b0 = \{(g3=10)(g2=10)\}\). Then stick diagram for this multiplication is as shown in fig. 5.

Figure 4. 2 × 2 bit multiplication using Urdhva Tiryagbhyam

4.2. VEDIC MULTIPLIER
Vedic mathematics is part of four Vedas (books of wisdom). It is part of Sthapatyaa-Veda (book on civil engineering and architecture), which is an upa-veda (supplement) of Atharva Veda. It gives explanation of several mathematical terms including arithmetic, geometry (plane, co-ordinate), trigonometry, quadratic equations, factorization and even calculus. His Holiness Jagadguru Shankaracharya Bharati Krishna Teerthaji Maharaja (1884-1960) comprised all this work together and gave its mathematical explanation while discussing it for various applications. The work presented here, makes use of Vedic Mathematics. “Urdhva Tiryagbhyam Sutra” or “Vertically and Crosswise Algorithm” of Vedic mathematics for multiplication is used to develop digital multiplier architecture. This looks quite similar to the popular array multiplier architecture. This Sutra shows how to handle multiplication of a larger number (N × N, of N bits each) by breaking it into smaller numbers of size \((N/2 = n, \text{say}) \) and these smaller numbers can again be broken into smaller numbers (\(n/2 \) each) till we reach multiplicand size of \((2 \times 2) \). Thus, simplifying the whole multiplication process. Let number1 = (10)2 and number2 = (10)2. Their multiplication using Urdhva Tiryagbhyam is shown fig. 4.

Figure 5. Stick Diagram
4 X 4 bit multiplication carried out using 2 X 2 bit multiplication blocks is shown in fig. 6. All 2 X 2 bit multiplications are carried out simultaneously. Hence speed boosting is achieved.

4.3. SELECTION OF ADDERS

Choice of speedy adder is done by implementing and comparing. Ripple carry adder (RCA), carry look ahead adder (CLA), carry save adder with last stage built by ripple carry adder (CSA-RCA) and carry save adder with last stage built by carry look ahead adder (CSA-CLA) for family Spartan 3E.

As per results of comparisons, for two 8 bit number’s addition carry look ahead adder (CLA) is selected. For three and four 8 bit number’s addition carry save adder with last stage built by ripple carry adder is selected (CSA-RCA).

VII. CONCLUSION

This paper, presents speedy implementation of discrete linear convolution. This particular model has the advantage of being fine tuned for any signal processing application. To accurately analyze proposed system, design is coded using the VHDL hardware description language and synthesized it for FPGA products using ISE. The proposed circuit takes about 17ns to complete on 90 nm process technology devices. Similarly, the presented concept can be extended on an NXN case. Key element behind increasing speed of convolver is multiplier design based on Urdhva Tiryagbhyam sutra of Vedic mathematics and parallel implementation of hardware. Vedic Mathematics is like drops picked up from the ocean of Vedas.

REFERENCES

AUTHOR'S PROFILE:

[1]. GORRE SUDHEER KUMAR
Pursuing M.Tech, Dept of ECE, SREE CHAITANYA INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR, T.S., INDIA.

[2]. A.VIKRAM working as Assistant Professor, Dept of ECE, SREE CHAITANYA INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR, T.S., INDIA.