
International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 65

DATABASE INTRUSION DETECTION

RESPONSE SYSTEM

T.Swetha
1

B.KRISHNA PRASAD
2

 P.V.KUMAR
3

1. (M.TECH, CSE), BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

2. Associate Professor(CSE), BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

3. HOD(CSE), BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

ABSTRACT

We present the findings of my survey on intrusion detection system. The intrusion detection

system is responsible for issuing a suitable response to request. We describes the database response

policies to support our intrusion response system. it very easy for the database administrators to

specify appropriate response actions for different circumstances depending upon the nature of the

anomalous request. We mainly focuses on two issues that policy matching, and policy administration.

We also extend the PostgreSQL DBMS with our policy matching mechanism, and report

experimental results.The experimental evaluation shows that our techniques are very efficient. The

other issue that we address is that of administration of response policies to prevent malicious

modifications to policy objects from legitimate users.

Index Terms—Databases, intrusion detection, response, prevention, policies, threshold signatures.

I. INTRODUCTION

Database activity monitoring has been

identified by Gartner research as one of the top

five strategies that are crucial for reducing data

leaks in Organizations. Such step-up in data

vigilance by organizations is partly driven by

various US government regulations concerning

data management such as SOX, PCI, GLBA,

HIPAA, and so forth. Organizations have also

come to realize that current attack techniques are

more sophisticated, organized, and targeted than

the broad-based hacking days of past. Often, it is

the sensitive and proprietary data that is the real

target of attackers. Also, with greater data

integration, aggregation and disclosure,

preventing data theft, from both inside and

outside organizations, has become a major

challenge.

Standard database security mechanisms,

such as access control, authentication, and

encryption, are not of much help when it comes

to preventing data theft from insiders Such

threats have thus forced organizations to

reevaluate security strategies for their internal

databases. Monitoring a database to detect

potential intrusions, intrusion detection (ID), is a

crucial technique that has to be part of any

comprehensive security solution for high-

assurance database security. Note that the ID

systems that are developed must be tailored for a

Database Management System (DBMS) since

database-related attacks such as SQL injection

and data exfiltration are not malicious for the

underlying operating system or the network.

A suspended request is simply put on

hold, until some specific actions are executed by

the user, such as the execution of further

authentication steps. A tainted request is marked

as a potential suspicious request resulting in

further monitoring of the user and possibly in

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 66

the suspension or dropping of subsequent

requests by the same user.

II. Existing System

Organizations have also come to realize

that current attack techniques are more

sophisticated, organized, and targeted than the

broad-based hacking days of past. Often, it is the

sensitive and proprietary data that is the real

target of attackers. Also, with greater data

integration, aggregation and disclosure,

preventing data theft, from both inside and

outside organizations, has become a major

challenge. Standard database security

mechanisms, such as access control,

authentication, and encryption, are not of much

help when it comes to preventing data theft from

insiders. Such threats have thus forced

organizations to reevaluate security strategies for

their internal databases. Monitoring a database

to detect potential intrusions, intrusion detection

(ID), is a crucial technique that has to be part of

any comprehensive security solution for high-

assurance database security.

ID mechanism consists of two main

elements, specifically tailored to a DBMS: an

anomaly detection (AD) system and an anomaly

response system. The first element is based on

the construction of database access profiles of

roles and users, and on the use of such profiles

for the AD task. A user-request that does not

conform to the normal access profiles is

characterized as anomalous. Profiles can record

information of different levels of details; we

refer the reader to for additional information and

experimental results. The second element of our

approach the focus of this paper—is in charge of

taking some actions once an anomaly is

detected. There are three main types of response

actions, that we refer to, respectively, as

conservative actions, fine-grained actions, and

aggressive actions. The conservative actions,

such as sending an alert, allow the anomalous

request to go through, whereas the aggressive

actions can effectively block the anomalous

request. Fine-grained response actions, on the

other hand, are neither conservative nor

aggressive. Such actions may suspend or taint an

anomalous request. A suspended request is

simply put on hold, until some specific actions

are executed by the user, such as the execution

of further authentication steps. A tainted request

is marked as a potential suspicious request

resulting in further monitoring of the user and

possibly in the suspension or dropping of

subsequent requests by the same user.

III. PROPOSED SYSTEM

ID mechanism consists of two main

elements, specifically tailored to a DBMS: an

anomaly detection (AD) system and an anomaly

response system. The first element is based on

the construction of database access profiles of

roles and users, and on the use of such profiles

for the Attack. A user-request that does not

conform to the normal access profiles is

characterized as anomalous. Profiles can record

information of different levels of details; we

refer the reader to for additional information

and experimental results. The second element of

our approach— the focus of this paper—is in

charge of taking some actions once an anomaly

is detected. There are three main types of

response actions that we refer to, respectively, as

conservative actions, fine-grained actions, and

aggressive actions. The conservative actions,

such as sending an alert, allow the anomalous

request to go through, whereas the aggressive

actions can effectively block the anomalous

request. Fine-grained response actions, on the

other hand, are neither conservative nor

aggressive. Such actions may suspend or taint an

anomalous request . A suspended request is

simply put on hold, until some specific actions

are executed by the user, such as the execution

of further authentication steps. A tainted request

is marked as a potential suspicious request

resulting in further monitoring of the user and

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 67

possibly in the suspension or dropping of

subsequent requests by the same user.

Advantage in Proposed System:

 The response component is responsible

for issuing a suitable response to an

anomalous user request. We proposed

the notion of database response policies

for specifying appropriate response

actions.

1. Policy Language

The detection of an anomaly by the

detection engine can be considered as a system

event. The attributes of the anomaly, such as

user, role, SQL command, then correspond to

the environment surrounding such an event.

Intuitively, a policy can be specified taking into

account the anomaly attributes to guide the

response engine in taking a suitable action.

Keeping this in mind, we propose an Event-

Condition-Action (ECA) language for

specifying response policies. Later in this

section, we extend the ECA language to support

novel response semantics. ECA rules have been

widely investigated in the field of active

databases [10]. An ECA rule is typically

organized as follows:

ON {Event} IF {Condition} THEN {Action}

 As it is well known, its semantics is as follows:

if the event arises and the condition evaluates to

true, the specified action is executed. In our

context, an event is the detection of an anomaly

by the detection engine. A condition is specified

on the attributes of the detected anomaly. An

action is the response action executed by the

engine. In what follows, we use the term ECA

policy instead of the common terms ECA rules

and triggers to emphasize the

2. Anomaly Attributes

The anomaly detection mechanism

provides its assessment of the anomaly using the

anomaly attributes. We have identified two main

categories for such attributes. The first category,

referred to as contextual category, includes all

attributes describing the context of the

anomalous request such as user, role, source,

and time. The second category, referred to as

structural category, includes all attributes

conveying information about the structure of the

anomalous request such as SQL command, and

accessed database objects. Details concerning

these attributes are reported in Table 1. The

detection engine submits its characterization of

the anomaly using the anomaly attributes.

Therefore, the anomaly attributes also act as an

interface for the response engine, thereby hiding

the internals of the detection mechanism. Note

that the list of anomaly attributes provided here

is not exhaustive. Our implementation of the

response system can be configured to

include/exclude other user-defined anomaly

attributes.

Table 3.1 anomaly attributes

3. Interactive ECA Response Policies

An ECA policy is sufficient to trigger

simple response measures such as disconnecting

users, dropping an anomalous request, sending

an alert, and so forth. In some cases, however,

we need to engage in interactions with users. As

ECA policies are unable to support such

sequence of actions, we extend them with a

confirmation action construct. A confirmation

action is the second course of action after the

initial response action. Its purpose is to interact

with the user to resolve the effects of the initial

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 68

action. If the confirmation action is successful,

the resolution action is executed, otherwise the

failure action is executed. Thus, a response

policy in our framework can be symbolically

represented as follows:

ON {Event} IF {Condition}

THEN {Initial Action} CONFIRM

{Confirmation Action}

ON SUCCESS {Resolution Action} ON

FAILURE {Failure Action}

IV. Architecture:

Fig: 3.3 System Architecture

V. APPROACHES

This project provides the maintenance of the

data and to detect the anomaly actions. To those

reasons we are developing this project with the

following modules.

 User administration & Authentication

 Policy Administration

 Policy Creation

 Anomaly detection

 Anomaly Response System

 System Log & Access Information

1. User Administration &

Authentication

The DBA is centrally responsible for DB and

user maintenance. By default there is only one

DBA. The DBA then creates other DBA’s and

users. These users are maintained with

appropriate privileges or permissions. Only

these users can login and access the database

objects.

2. Policy Administration

The main issue in the administration of

response policies is how to protect a policy from

malicious modifications made by a DBA that

has legitimate access rights to the policy object.

To address this issue, we propose an

administration model referred to as the JTAM.

The threat scenario that we assume is that a

DBA has all the privileges in the DBMS, and

thus it is able to execute arbitrary SQL insert,

update, and delete commands to make malicious

modifications to the policies. Such actions are

possible even if the policies are stored in the

system catalogs.3 JTAM protects a response

policy against malicious modifications by

maintaining a digital signature on the policy

definition. The fundamental premise of our

approach is that we do not trust a single DBA

(with the secret key) to create or manage the

response policies, but the threat is mitigated if

the trust (the secret key) is distributed among

multiple DBAs. Each DBA who floats a policy

has the policy in cipher text. Only when the

appropriate keys as associated with the other

DBA’s are provided they unlock the cipher text

and then place their opinion or status on the

policies. Only when a majority of DBA’s

approve the policy the policy can be associated

with the created users. The policy also

associates with a response action that has to be

performed when an anomaly is detected.

3. JTAM Setup

Before the response policies can be

used, some security parameters are registered

with the DBMS as part of a onetime registration

phase. The details of the registration phase are as

follows: The parameter l is set equal to the

number of DBAs registered with the DBMS.

Such requirement allows any DBA to generate a

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 69

valid signature share on a policy object, thereby

making our approach very flexible. Shoup’s

scheme also requires a trusted dealer to generate

the security parameters. This is because it relies

on a special property of the RSA modulus,

namely, that it must be the product of two safe

primes. We assume the DBMS to be the trusted

component that generates the security

parameters.

 For all values of k, such that 2 _ k _ l _ 1, the

DBMS generates the following parameters:

Here the technique used is ascii key protection.

For security purpose the ascii key system is

used. For every character in the password the

ascii values of each value are encrpted with the

constant value 118.

epwd = epwd + (Chr(Asc(Mid(pwd1.Text, i, 1))

+ 118))

4. Life Cycle of a Response Policy

Object

The steps in the lifecycle of a policy

object are policy creation, activation,

suspension, alteration, and deletion. The

lifecycle is shown in Fig. 1 using a policy state

transition diagram. The initial state of a policy

object after policy creation is CREATED. After

the policy has been authorized by k -1

administrators, the policy state is changed to

ACTIVATED. A policy in an ACTIVATED

state is operational, that is, it is considered by

the policy matching procedure in its search for

matching policies. If a policy needs to be

altered, dropped or made nonoperational, it must

be moved to the SUSPENDED state. The

transition from the ACTIVATED state to the

SUSPENDED state must also be authorized by

k-1 administrators, before which the policy is in

the SUSPEND IN-PROGRESS state. Note that a

policy in the SUSPEND IN-PROGRESS state is

also considered to be operational. From the

SUSPENDED state, a policy can be either

moved back to the CREATED state or it can be

moved to the DROPPED state. A single

administrator can move a policy to the

CREATED state from the SUSPENDED state,

while a policy drop operation must be

authorized by k-1 administrators (before which

the policy is in the DROP IN-PROGRESS

state).

Fig 4.1: policy state transition diagram.

5. Policy Activation

Once the policy has been created, it

must be authorized for activation by at least k - 1

administrators after which the DBMS changes

the state of the policy to ACTIVATED. An

activated policy can be assigned to a user. A

policy identifies the objects and privileges the

assigned user has on the object.

Before the response policies can be

used, some security parameters are registered

with the DBMS as part of a onetime registration

phase. The details of the registration phase are as

follows: The parameter l is set equal to the

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 70

number of DBAs registered with the DBMS.

Such requirement allows any DBA to generate a

valid signature share on a policy object, thereby

making our approach very flexible.

6. Anomaly Detection:
This element is based on the construction of

database access profiles of roles and users, and

on the use of such Profiles for the AD task. A

user-request that does not conform to the normal

access profiles is characterized as anomalous.

The fundamental problem in such administration

model is that of conflict-of-interest. The main

issue is essentially that of insider threats, that is,

how to protect a response policy object from

malicious modifications made by a database user

that has legitimate access rights to the policy

object.

 Anomaly:

 A user-request that does not

conform to the normal access profiles is

characterized as anomaly.

 Anomaly Attributes:

7. Anomaly Response System:

This element is in charge of taking some

actions once an anomaly is detected. There are

three main types of response actions, that we

refer to, respectively, as conservative actions,

fine-grained actions, and aggressive actions. The

conservative actions, such as sending an alert,

allow the anomalous request to go through,

whereas the aggressive actions can effectively

block the anomalous request. Fine-grained

response actions, on the other hand, are neither

conservative nor aggressive. Such actions may

suspend or taint an anomalous request. A

suspended request is simply put on hold, until

some specific actions are executed by the user,

such as the execution of further authentication

steps.

 A tainted request is marked as a

potential suspicious request resulting in further

monitoring of the user and possibly in the

suspension or dropping of subsequent requests

by the same user.

Fig: 4.2 Immediate Response Actions

8. System Log & Access Information:

This module provides the DBA with anomalies

detected and reports various activities or

attempted activities made by the users. The

DBA uses this to generate various reports based

on which an action or the revoke of privileges

are made.

The fallowing sequence diagram shows the

overall functionality of all users

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 71

VI. Experimental Results:

We begin with describing the

experimental set-up. The experiments are

performed on a Pentium dual-core processor

machine with 2 GB RAM running openSUSE

10.3. The programming language used is

PostgreSQL’s procedural language i.e. pl/pgsql.

For the DBMS installation, we create 10

databases.

We vary the number of policies keeping

the anomaly size (i.e number of anomaly

attribute values submitted by the detection

engine) constant at 10. Note that the anomaly

attribute values include the “Objs” attribute

values. The size of the PCL is kept at 1000

implying that the system can support a

maximum of 1000 policies. The results are

shown in figure 6(a). The policy selection time

is very low at approximately 20 ms. Moreover, it

remains almost constant irrespective of the

number of policies in the database. The reason is

that the queries to PG PCL and PG SOURCE

PCL tables are very efficient (due to indexing),

while the bulk of the time of the policy selection

algorithm is instead spent in obtaining the policy

ids from the final PCL. This is because we

currently use PostgreSQL’s builtin bit-string

datatype for storing the PCLs. We believe that

the efficiency of the policy selection algorithm

using PCLs can be further improved by a more

efficient encoding of the PCLs.

P:POLICYADD:DBA A:ADMINOP U:USERAD

1: REQ USER ADMIN

2: REQUEST

3: PROMPT TRANSACTION TYPE

4: NEW/UPDATE/DEL/VIEW

5: USER INFO

6: VERIFY

7: SAVE & UPDATE

USER TABLE

8: REQUEST POLICY ADMIN

9: REQUEST

10: PROMPT TRANSACTION TYPE

11: NEW/UPDATE/DELETE

12: PROMPT POLICY INFO

13: POLICY INFO

14: VERIFY

15: SAVE POLICY
16: REQUEST POLICY APPROVAL

17: PROMPT POLICY ID

18: POLICY ID

19: PROMPT APPROVAL STATUS

20: CHECK ID

21: APPROVAL STATUS

22: SAVE & UPDATE

APPROVAL
23: SUCCESS/FAIL

24: FETCH APPROVAL

POLICY

25: REQUEST ASSIGN POLICY

26: PROMPT POLICY ID

27: ASSOCIATE POLICY TO

USERS28: POLICY ID

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 72

VII. CONCLUSION

The response component is responsible

for issuing a suitable response to an anomalous

user request. We proposed the notion of

database response policies for specifying

appropriate response actions. We presented an

interactive Event-Condition-Action type

response policy language that makes it very easy

for the database security administrator to specify

appropriate response actions for different

circumstances depending upon the nature of the

anomalous request. The two main issues that we

addressed in the context of such response

policies are policy matching, and policy

administration. For the policy matching

procedure, we described algorithms to

efficiently search the policy database for policies

matching an anomalous request assessment.

This would enhance database monitoring and

misuse of privileges assigned to users. Since the

application provides support to K database

administrator’s security is enhanced. The

possibility of an unwanted permission being

assigned or excess permission being assigned

can now be minimized or nullified.

REFERRENCES

[1] A. Conry-Murray, “The Threat from within.

NetworkComputing(Aug2005)

”http://www.networkcomputing.com/showA

rticle.jhtml?articleID=166400792, July

2009.

[2] R. Mogull, “Top Five Steps to Prevent Data

Loss and Information Leaks. Gartner

Research),” http://www.gartner.com, 2010.

[3] M. Nicolett and J. Wheatman, “Dam

Technology Provides Monitoring and

Analytics withLess Overhead. Gartner

Research(Nov.2007),”

Http://www.gartner.com, 2010.

[4] Raji V Ashokkumar P “Protecting Database

from Malicious Modifications Using

JTAM” February 2012.

[5] Ashish Kamra, Elisa Bertino, and Rimma

Nehme “ Responding to

AnomalousDatabase Requests” Purdue

University 2008

[6] Kamra, E. Terzi, and E. Bertino,“Detecting

Anomalous Access Patterns in Relational

Databases,” J. Very Large DataBases

(VLDB), vol. 17, no. 5, pp. 1063-1077,

2008.

[7] Kamra and E. Bertino, “Design and

Implementation of SAACS:A State-Aware

Access Control System,” Proc. Ann.

Computer Security Applications

Conf.(ACSAC), 2009.

[8] The Postgresql Global DevelopmentGroup,

”http://www.postgresql.org/, July 2008.

[9] J. Widom and S. Ceri, Active Database

Systems: Triggers and Rules for Advanced

DatabaseProcessing.

[10] Morgan Kaufmann “Oracle Database

Concepts 11g Release

http://download.oracle.com/docs/cd/B28359

_01/server.111/b28318/datadict.htm, July

2009.

[11] Shoup, “Practical Threshold Signatures,”

Proc. Int’l Conf. Theory and Application of

Cryptographic Techniques (EUROCRYPT),

pp. 207-220, 2000.

[12] R. Gennaro, T. Rabin, S. Jarecki, and H.

Krawczyk, “Robust and Efficient Sharing of

RSA Functions,” J. Cryptology, vol. 20, no.

3,pp. 393-400, 2007.

[13] Kincaid and W. Cheney, Numerical

Analysis: Mathematics of Scientific

Computing. Brooks Cole, 2001.

http://www.networkcomputing.com/showArticle
http://www.networkcomputing.com/showArticle
http://www.gartner.com/
http://download.oracle.com/docs/cd/B28359_01/
http://download.oracle.com/docs/cd/B28359_01/

