
International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 41

A Framework for Parallel data processing in

Cloud systems

Shripad Subhash Lokhande
 1

Prof. Manoj Limchand Bangar
2

Sunil Narayan Shirsat
3

1. Assistant Professor, Department of I.T. Smt. Kashibai Navale College of Engineering

2. Professor, Department of I.T. Smt. Kashibai Navale College of Engineering

3. Assistant Professor, Department of I.T. Smt. Kashibai Navale College of Engineering

ABSTRACT

 Cloud computing refers to the use and access of multiple server-based computational resources via a

digital network , In cloud computing, applications are provided and managed by the cloud server and data is also

stored remotely in the cloud configuration. Cloud Computing is gaining acceptance in many IT organizations, as

an elastic, flexible and variable-cost way to deploy their service platforms using outsourced resources. Major

Cloud computing companies have started to integrate frameworks for parallel data processing in their product

portfolio, making it easy for customers to access these services and to deploy their programs. However, the

processing frameworks which are currently used have been designed for static, homogeneous cluster setups and

disregard the particular nature of a cloud. In this paper, we discuss the opportunities and challenges for efficient

parallel data processing in clouds and present our research project Nephele. Nephele is the first data processing

framework to explicitly exploit the dynamic resource allocation offered by today’s IaaS clouds for both, task

scheduling and execution. Particular tasks of a processing job can be assigned to different types of virtual

machines which are automatically instantiated and terminated during the job execution. Based on this new

framework

Index Terms: Cloud Computing, loosely coupled applications, many-task computing, Many-Task Computing,

High-Throughput Computing, Loosely Coupled Applications, Cloud Computing

I. INTRODUCTION

The vast amount of data they have to

deal with every day has made traditional

database solutions prohibitively expensive [5].

Instead, these companies have popularized an

architectural paradigm that is based on a large

number of shared-nothing commodity servers.

Problems like processing crawled documents,

regenerating a web index are split into several

independent subtasks, distributed among the

available nodes and computed in parallel. Many-

Task Computing (MTC) paradigm [1] embraces

different types of high-performance applications

involving many different tasks, and requiring

large number of computational resources over

short periods of time. These tasks can be of very

different nature, with sizes from small to large,

loosely coupled or tightly coupled, or tightly

coupled, or compute intensive or data-intensive.

Cloud computing technologies can offer

important benefits for IT organizations and data

centers running MTC applications: elasticity and

rapid provisioning, enabling the organization to

increase or decrease its infrastructure capacity

within minutes, according to the computing

necessities. Today a growing number of

companies have to process huge amounts of data

in a cost-efficient manner. Classic

representatives for these companies are

operators of Internet search engines, like

Google, Yahoo, or Microsoft. The vast amount

of data they have to deal with every day has

made traditional database solutions prohibitively

expensive [5].

 Instead, these companies have

popularized an architectural paradigm based on

a large number of commodity servers. Problems

like processing crawled documents or

regenerating a web index are split into several

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 42

independent subtasks, distributed among the

available nodes, and computed in parallel.

 In order to simplify the development of

distributed applications on top of such

architectures, many of these companies have

also built customized data processing

frameworks. Examples are Google’s

MapReduce [9], Microsoft’s Dryad’s or

Yahoo!’s Map-Reduce-Merge [5]. They can be

classified by terms like high-throughput

computing (HTC) or many-task computing

(MTC), depending on the amount of data and

the number of tasks involved in the computation.

Although these systems differ in design, their

programming models share similar objectives,

namely hiding the hassle of parallel

programming, fault tolerance, hiding the hassle

of parallel programming, fault tolerance, can

typically continue to write sequential programs.

The processing framework then takes

care of distributing the program among the

available nodes and executes each instance of

the program on the appropriate fragment of data.

For companies that only have to process large

amounts of data occasionally running their own

data center is obviously not an option.

Instead, Cloud computing has emerged

as a promising approach to rent a large IT

infrastructure on a short-term pay-per-usage

basis. Operators of so called IaaS clouds, like

Amazon EC2 [1], let their customers allocate,

access, and control a set of virtual machines

(VMs) which run inside their data centers and

only charge them for the period of time the

machines are allocated. The VMs are typically

offered in different types, each type with its own

characteristics (number of CPU cores, amount of

main memory, etc.) and cost. Amazon has

integrated Hadoop as one of its core

infrastructure services [2]. However, instead of

embracing its dynamic resource allocation,

current data processing frameworks rather

expect the cloud to imitate the static nature of

the cluster environments they were originally

designed. In this paper, we want to discuss the

particular challenges and opportunities for

efficient parallel data processing in clouds and

present Nephele, a new processing framework

explicitly designed for cloud environments.

Most notably, Nephele is the first data

processing framework to include the possibility

of dynamically allocating/deallocating different

compute resources from a cloud in its

scheduling and during job execution. This paper

is an extended version of [12].

The paper is structured as follows:

Section 2 starts with analyzing the above

mentioned opportunities and challenges and

derives some important design principles for our

new framework. In Section 3, we present

Nephele’s basic architecture and outline how

jobs can be described and executed in the cloud.

Requirements and Resources

Current data processing frameworks like

Google’s Map Reduce or Microsoft’s Dryad

engine have been designed for cluster

environments. In this section, we discuss how

abandoning these assumptions raises new

opportunities but also challenges for efficient

parallel data processing in clouds.

An Opportunities One of an IaaS

cloud’s key features is the provisioning of

compute resources on demand. New VMs can be

allocated at any time through a well-defined

interface and become available in a matter of

seconds. Machines which are no longer used can

be terminated instantly and the cloud customer

will be charged for them no more. Moreover,

cloud operators like Amazon let their customers

rent VMs of different types, i.e., with different

computational power, different sizes of main

memory, and storage. Hence, the compute

resources available in a cloud are highly

dynamic and possibly heterogeneous.

 This new paradigm allows allocating

compute resources dynamically and just for the

time they are required in the processing

workflow. For, e.g., a framework exploiting the

possibilities of a cloud could start with a single

VM which analyzes an incoming job and then

advises the cloud to directly start the required

VMs according to the job’s processing phases.

After each phase, the machines could be

released and no longer contribute to the overall

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 43

cost for the processing job. First, the scheduler

of such a framework must become aware of the

cloud environment a job should be executed in.

Second, the paradigm used to describe jobs must

be powerful enough to express dependencies

between the different tasks the jobs consists of.

The system must be aware of which task’s

output is required as another task’s input.

Finally, the scheduler of such a processing

framework must be able to determine which task

Nephele's Architecture

Nephele's architecture follows a classical

master-worker pattern as illustrated in Fig. 1.

Figure 1: Structural overview of Nephele

 running inside a compute cloud Before

submitting a Nephele compute job, a user must

start an instance inside the cloud which runs the

so called Job Manager (JM). The Job Manager

receives the client's jobs, is responsible for

scheduling them and coordinates their execution.

It is capable of communicating with the cloud

controller through a web service interface and

can allocate or de allocate virtual machines

according to the current job execution phase. We

will comply with common cloud computing

terminology and refer to these virtual machines

as instances for the remainder of this paper. The

term instance type will be used to differentiate

between virtual machines with different

hardware characteristics. The actual execution of

tasks which a Nephele job consists of is carried

out by a set of instances. Each instance runs a

local component of the Nephele framework we

call a Task Manager (TM). A Task Manager

receives one or more tasks from the Job

Manager at a time, executes them and after that

informs the Job Manager about their completion

or possible errors. Unless a job is submitted to

the Job Manager, we expect the set of instances

(and hence the set of Task Managers) to be

empty. Upon job reception the Job Manager then

decides, depending on the particular tasks in-

side the job, how many and what type of

instances the job should be executed on, and

when the respective instances must be

allocated/deallocated in order to ensure a

continuous but cost-efficient processing. The

concrete strategies for these scheduling

decisions are explained later in this section. The

newly allocated instances boot up with a

previously compiled virtual machine image. The

image is configured to automatically start a Task

Manager and register it with the Job Manager.

Once all the necessary Task Managers have

successfully contacted the Job Manager, it

triggers the execution of the scheduled job.

Initially, the virtual machines images used to

boot up the Task Managers are blank and do not

contain any of the data the Nephele job is

supposed to operate on. As a result, we expect

the cloud to offer persistent storage (like e.g.

Amazon S3 [3]).

This persistent storage is supposed to

store the job's input data and eventually receive

its output data. It must be accessible for both the

Job Manager as well as for the set of Task

Managers, even if they are connected by a

private or virtual network.

We also decided to use DAGs to

describe processing jobs for two major reasons:

The First reason is that DAGs allow tasks to

have multiple input and multiple output edges.

This tremendously simples the implementation

of classical data combining functions like, e.g.,

join operations [6].

Second and more importantly, though,

the DAG's edges explicitly model the

communication paths which exist inside the

processing job. As long as the particular

processing tasks only exchange data through

these designated communication edges, Nephele

can always keep track of what instance might

still require data from what other instances and

which instance can potentially be shut down and

deallocated. Defining a Nephele job comprises

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 44

three mandatory steps: First, the user must write

the program code for each task of his

processing job or select it from an external

library.

Second, the task program must be

assigned to a vertex. Finally, the vertices must

be connected by edges to define the

communication paths of the job. Tasks are

expected to contain sequential code and process

so-called records, the primary data unit in

Nephele. Users may define arbitrary types of

records, all implementing a common interface.

From a programmer's perspective records enter

and leave the task program through input or

output gates. A task may have an arbitrary

number of these input and output gates, which

are at runtime connected by the Nephele

framework to transport records from one task to

the other.

After having specified the code for the

particular tasks of the job, the user must define a

so-called Job Graph. The Job Graph maps each

task to a vertex of a directed acyclic graph

(DAG) and determines the communication paths

between these. Vertices with either no incoming

or outgoing edges are treated specially in

Nephele: The tasks assigned to these vertices are

considered to be either data sources (input

vertices) or sinks (output vertices) in the

processing workflow. They can be associated

with a URL pointing to where to read or write

the data. Figure 2 illustrates the simplest

possible Job Graph, consisting only of one input,

one task and one output vertex. One major

design goal of Job Graphs has been simplicity:

Users should be able to describe tasks and their

relation- ships on a very abstract level, leaving

aspects like task parrallelization and the

mapping to instances to Nephele. However,

users who wish to specify these aspects

explicitly can provide further annotations to

their job description.

 These annotations include:

Number of subtasks: A developer can declare

his task to be suitable for parallelization. Users

that include such tasks in their Job Graph can

specify how many parallel subtasks Nephele

should split the respective task into at runtime.

Subtasks execute the same task code, however,

they typically process different fragments of the

data.

 Number of subtasks per instance: By default

each (sub)task is assigned to a separate instance.

In case several (sub)tasks are supposed to share

the same in- stance, the user can provide a

corresponding annotation with the respective

task.

 Sharing instances between tasks: Subtasks of

different tasks are usually assigned to different

(sets of) instances unless prevented by another

scheduling restriction. If a set of instances

should be shared between different tasks the

user can attach a corresponding annotation to the

Job Graph.

 Channel types: For each edge connecting two

vertices the user can determine a so-called

channel type. Before executing a job, Nephele

requires all edges of the original Job Graph to be

replaced by a channel type. The channel type

specifies how records are transported from one

(sub)task to another at runtime. The choice of

the channel type can have several implications

on the entire job schedule including when and

on what instance a (sub)task is executed.

 Instance type: A (sub)task can be executed on

different instance types which may be more or

less suit able for the considered program.

Therefore we have developed special

annotations task developers can use to

characterize the hardware requirements of their

International Journal Of Advanced Research and Innovations Vol.1, Issue .1
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM Dec/2012 Page 45

code. However, a user who simply utilizes these

annotated tasks can also overwrite the

developer's suggestion and explicitly specify the

instance type for a task in the Job Graph. If the

user omits to augment the Job Graph with these

specifications, Kneehole’s scheduler will apply

default strategies which are discussed in the

following subsection. Once the Job Graph is

specified, the user can submit it to the Job

Manager, together with the credentials he

obtained from his cloud operator. The

credentials are required since the Job Manager

must allocate/deal locate instances from the

cloud during the job execution on behalf of the

user.

VI. CONCLUSION

In this paper, we have discussed the

challenges and opportunities for efficient

parallel data Processing in cloud environments

and presented Nehalem, the first data processing

framework to exploit the dynamic resource

provisioning offered by today’s Iasi clouds. We

have described Kneehole’s basic architecture

and presented a performance comparison to the

established data processing framework Hadoop.

The performance evaluation gives a first

impression on how the ability to assign specific

virtual machine types to specific tasks of a

processing job, as well as the possibility to

automatically allocate/deal locate virtual

machines in the course of a job execution, can

help to improve the overall resource utilization

and, consequently, reduce the processing cost. In

Particular, we are interested in improving

Nephele’s ability to adapt to resource overload

or Underutilization during the job execution

automatically. Our current profiling approach

builds a valuable basis for this; however, at the

moment the system still requires a reasonable

amount of user annotations. In general, we think

our work represents an important contribution to

the growing field of Cloud computing services

and points out exciting new opportunities in the

field of parallel data processing.

REFERENCES

1. D. Batter´, S. Ewan, F. Hueske, O. Kao, V.

Markl, and D. Warneke “Nephele/PACTs: A

Programming Model and Execution

Framework for Web-Scale Analytical

Processing,” Proc.

2. ACM Symp. Cloud Computing (SoCC ’10),

pp. 119-130, 2010.

3. D. H. chih Yang, A. Dasdan, R.-L.

Hsiao,and D.S. Parker, “Map- Reduce-

Merge: Simplified Relational Data

Processing on Large Clusters,” Proc. ACM

SIGMOD Int’l Conf.

4. B. Claudel, G. Huard, and O. Richard.

Taktuk, adaptive deployment of remote

executions. In HPDC ’09: Proceedings of

the 18th ACM International Symposium on

High Performance Distributed Computing,

pages 91–100, New York, 2009. ACM.

5. R. Chaiken, B. Jenkins, P.-A. Larson, B.

Ramsey, D. Shakib, S. Weaver, and J. Zhou.

SCOPE: easy and e_cient parallel

processing of massive data sets. Proc.

VLDB Endow.,1(2):1265{1276, 2008.

6. M. Coates, R. Castro, R. Nowak, M.

Gadhiok, R. King, and Y. Tsang,

“Maximum Likelihood Network Topology

Identification from Edge-Based Unicast

Measurements,” SIGMETRICS

Performance Evaluation Rev., vol. 30, no. 1,

pp. 11-20, 2002.

7. R. Davoli, “VDE: Virtual Distributed

Ethernet,” Proc. Testbeds and Research

Infrastructures for the Development of

Networksand Communities, Int’l Conf., pp.

213-220,2005.

8. T. Dornemann, E. Juhnke, and B.

Freisleben,“On-Demand Resource

Provisioning for BPEL

9. Workflows Using Amazon’s Elastic

ComputeCloud,” Proc. Ninth IEEE/ACM

Int’l Symp. Cluster Computing and the Grid

(CCGRID ’09),pp. 140-147, 2009.

10. Foster and C. Kesselman, “Globus:

AMetacomputing Infrastructure Toolkit,”

Int’l J.Supercomputer Applications, vol. 11,

no. 2, pp.115-128, 1997.

