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ABSTRACT 

  Cloud computing refers to the use and access of multiple server-based computational resources via a 

digital network , In cloud computing, applications are provided and managed by the cloud server and data is also 

stored remotely in the cloud configuration. Cloud Computing is gaining acceptance in many IT organizations, as 

an elastic, flexible and variable-cost way to deploy their service platforms using outsourced resources.  Major 

Cloud computing companies have started to integrate frameworks for parallel data processing in their product 

portfolio, making it easy for customers to access these services and to deploy their programs. However, the 

processing frameworks which are currently used have been designed for static, homogeneous cluster setups and 

disregard the particular nature of a cloud. In this paper, we discuss the opportunities and challenges for efficient 

parallel data processing in clouds and present our research project Nephele. Nephele is the first data processing 

framework to explicitly exploit the dynamic resource allocation offered by today’s IaaS clouds for both, task 

scheduling and execution. Particular tasks of a processing job can be assigned to different types of virtual 

machines which are automatically instantiated and terminated during the job execution. Based on this new 

framework 

Index Terms: Cloud Computing, loosely coupled applications, many-task computing, Many-Task Computing, 

High-Throughput Computing, Loosely Coupled Applications, Cloud Computing 

I.  INTRODUCTION 

  

The vast amount of data they have to 

deal with every day has made traditional 

database solutions prohibitively expensive [5]. 

Instead, these companies have popularized an 

architectural paradigm that is based on a large 

number of shared-nothing commodity servers. 

Problems like processing crawled documents, 

regenerating a web index are split into several 

independent subtasks, distributed among the 

available nodes and computed in parallel. Many-

Task Computing (MTC) paradigm [1] embraces 

different types of high-performance applications 

involving many different tasks, and requiring 

large number of computational resources over 

short periods of time. These tasks can be of very 

different nature, with sizes from small to large, 

loosely coupled or tightly coupled, or tightly 

coupled, or compute intensive or data-intensive. 

Cloud computing technologies can offer 

important benefits for IT organizations and data 

centers running MTC applications: elasticity and 

rapid provisioning, enabling the organization to 

increase or decrease its infrastructure capacity 

within minutes, according to the computing 

necessities. Today a growing number of 

companies have to process huge amounts of data 

in a cost-efficient manner. Classic 

representatives for these companies are 

operators of Internet search engines, like 

Google, Yahoo, or Microsoft. The vast amount 

of data they have to deal with every day has 

made traditional database solutions prohibitively 

expensive [5]. 

 

 Instead, these companies have 

popularized an architectural paradigm based on 

a large number of commodity servers. Problems 

like processing crawled documents or 

regenerating a web index are split into several 
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independent subtasks, distributed among the 

available nodes, and computed in parallel. 

 

 In order to simplify the development of 

distributed applications on top of such 

architectures, many of these companies have 

also built customized data processing 

frameworks. Examples are Google’s 

MapReduce [9], Microsoft’s Dryad’s or 

Yahoo!’s Map-Reduce-Merge [5]. They can be 

classified by terms like high-throughput 

computing (HTC) or many-task computing 

(MTC), depending on the amount of data and 

the number of tasks involved in the computation. 

Although these systems differ in design, their 

programming models share similar objectives, 

namely hiding the hassle of parallel 

programming, fault tolerance, hiding the hassle 

of parallel programming, fault tolerance, can 

typically continue to write sequential programs. 

 

The processing framework then takes 

care of distributing the program among the 

available nodes and executes each instance of 

the program on the appropriate fragment of data. 

For companies that only have to process large 

amounts of data occasionally running their own 

data center is obviously not an option.  

 

Instead, Cloud computing has emerged 

as a promising approach to rent a large IT 

infrastructure on a short-term pay-per-usage 

basis. Operators of so called IaaS clouds, like 

Amazon EC2 [1], let their customers allocate, 

access, and control a set of virtual machines 

(VMs) which run inside their  data centers and 

only charge them for the period of time the 

machines are allocated. The VMs are typically 

offered in different types, each type with its own 

characteristics (number of CPU cores, amount of 

main memory, etc.) and cost. Amazon has 

integrated Hadoop as one of its core 

infrastructure services [2]. However, instead of 

embracing its dynamic resource allocation, 

current data processing frameworks rather 

expect the cloud to imitate the static nature of 

the cluster environments they were originally 

designed. In this paper, we want to discuss the 

particular challenges and opportunities for 

efficient parallel data processing in clouds and 

present Nephele, a new processing framework 

explicitly designed for cloud environments. 

Most notably, Nephele is the first data 

processing framework to include the possibility 

of dynamically allocating/deallocating different 

compute resources from a cloud in its 

scheduling and during job execution. This paper 

is an extended version of [12].  

 

The paper is structured as follows: 

Section 2 starts with analyzing the above 

mentioned opportunities and challenges and 

derives some important design principles for our 

new framework. In Section 3, we present 

Nephele’s basic architecture and outline how 

jobs can be described and executed in the cloud. 

 

Requirements and Resources 

 

Current data processing frameworks like 

Google’s Map Reduce or Microsoft’s Dryad 

engine have been designed for cluster 

environments. In this section, we discuss how 

abandoning these assumptions raises new 

opportunities but also challenges for efficient 

parallel data processing in clouds.  

 

An Opportunities One of an IaaS 

cloud’s key features is the provisioning of 

compute resources on demand. New VMs can be 

allocated at any time through a well-defined 

interface and become available in a matter of 

seconds. Machines which are no longer used can 

be terminated instantly and the cloud customer 

will be charged for them no more. Moreover, 

cloud operators like Amazon let their customers 

rent VMs of different types, i.e., with different 

computational power, different sizes of main 

memory, and storage. Hence, the compute 

resources available in a cloud are highly 

dynamic and possibly heterogeneous.   

 

 This new paradigm allows allocating 

compute resources dynamically and just for the 

time they are required in the processing 

workflow. For, e.g., a framework exploiting the 

possibilities of a cloud could start with a single 

VM which analyzes an incoming job and then 

advises the cloud to directly start the required 

VMs according to the job’s processing phases. 

After each phase, the machines could be 

released and no longer contribute to the overall 
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cost for the processing job. First, the scheduler 

of such a framework must become aware of the 

cloud environment a job should be executed in. 

Second, the paradigm used to describe jobs must 

be powerful enough to express dependencies 

between the different tasks the jobs consists of. 

The system must be aware of which task’s 

output is required as another task’s input. 

Finally, the scheduler of such a processing 

framework must be able to determine which task 

 

Nephele's Architecture 

 

Nephele's architecture follows a classical 

master-worker pattern as illustrated in Fig. 1. 

 
Figure 1: Structural overview of Nephele 

 

 running inside a compute cloud Before 

submitting a Nephele compute job, a user must 

start an instance inside the cloud which runs the 

so called Job Manager (JM). The Job Manager 

receives the client's jobs, is responsible for 

scheduling them and coordinates their execution. 

It is capable of communicating with the cloud 

controller through a web service interface and 

can allocate or de allocate virtual machines 

according to the current job execution phase. We 

will comply with common cloud computing 

terminology and refer to these virtual machines 

as instances for the remainder of this paper. The 

term instance  type will be used to differentiate 

between virtual machines with different 

hardware characteristics. The actual execution of 

tasks which a Nephele job consists of is carried 

out by a set of instances. Each instance  runs a 

local component of the Nephele framework we 

call a Task Manager (TM). A Task Manager 

receives one or more tasks from the Job 

Manager at a time, executes them and after that 

informs the Job Manager about their completion 

or possible errors. Unless a job is submitted to 

the Job Manager, we expect the set of instances 

(and hence the set of Task Managers) to be 

empty. Upon job reception the Job Manager then 

decides, depending on the particular tasks in- 

side the job, how many and what type of 

instances the job should be executed on, and 

when the respective instances must be 

allocated/deallocated in order to ensure a 

continuous but cost-efficient processing. The 

concrete strategies for these scheduling 

decisions are explained later in this section. The 

newly allocated instances boot up with a 

previously compiled virtual machine image. The 

image is configured to automatically start a Task 

Manager and register it with the Job Manager. 

Once all the necessary Task Managers have 

successfully contacted the Job Manager, it 

triggers the execution of the scheduled job. 

Initially, the virtual machines images used to 

boot up the Task Managers are blank and do not 

contain any of the data the Nephele job is 

supposed to operate on. As a result, we expect 

the cloud to offer persistent storage (like e.g. 

Amazon S3 [3]).  

 

This persistent storage is supposed to 

store the job's input data and eventually receive 

its output data. It must be accessible for both the 

Job Manager as well as for the set of Task 

Managers, even if they are connected by a 

private or virtual network.  

 

We also decided to use DAGs to 

describe processing jobs for two major reasons: 

The First reason is that DAGs allow tasks to 

have multiple input and multiple output edges. 

This tremendously simples the implementation 

of classical data combining functions like, e.g., 

join operations [6].  

 

Second and more importantly, though, 

the DAG's edges explicitly model the 

communication paths which exist inside the 

processing job. As long as the particular 

processing tasks only exchange data through 

these designated communication edges, Nephele 

can always keep track of what instance might 

still require data from what other instances and 

which instance can potentially be shut down and 

deallocated. Defining a Nephele job comprises 
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three mandatory steps: First, the user must write 

the program code for each task of his  

processing job or select it from an external 

library. 

 

Second, the task program must be 

assigned to a vertex. Finally, the vertices must 

be connected by edges to define the 

communication paths of the job. Tasks are 

expected to contain sequential code and process 

so-called records, the primary data unit in 

Nephele. Users may define arbitrary types of 

records, all implementing a common interface. 

From a programmer's perspective records enter 

and leave the task program through input or 

output gates. A task may have an arbitrary 

number of these input and output gates, which 

are at runtime connected by the Nephele 

framework to transport records from one task to 

the other. 

 
 

After having specified the code for the 

particular tasks of the job, the user must define a 

so-called Job Graph. The Job Graph maps each 

task to a vertex of a directed acyclic graph 

(DAG) and determines the communication paths 

between these. Vertices with either no incoming 

or outgoing edges are treated specially in 

Nephele: The tasks assigned to these vertices are 

considered to be either data sources (input 

vertices) or sinks (output vertices) in the 

processing workflow. They can be associated 

with a URL pointing to where to read or write 

the data. Figure 2 illustrates the simplest 

possible Job Graph, consisting only of one input, 

one task and one output vertex. One major 

design goal of Job Graphs has been simplicity: 

Users should be able to describe tasks and their 

relation- ships on a very abstract level, leaving 

aspects like task parrallelization and the 

mapping to instances to Nephele. However, 

users who wish to specify these aspects 

explicitly can provide further annotations to 

their job description.   

 

 These annotations include:  

 

Number of subtasks: A developer can declare 

his task to be suitable for parallelization. Users 

that include such tasks in their Job Graph can 

specify how many parallel subtasks Nephele 

should split the respective task into at runtime. 

Subtasks execute the same task code, however, 

they typically process different fragments of the 

data. 

 

 Number of subtasks per instance: By default 

each (sub)task is assigned to a separate instance. 

In case several (sub)tasks are supposed to share 

the same in- stance, the user can provide a 

corresponding annotation with the respective 

task. 

  

 Sharing instances between tasks: Subtasks of 

different tasks are usually assigned to different 

(sets of) instances unless prevented by another 

scheduling restriction. If a set of instances 

should be shared between different tasks the 

user can attach a corresponding annotation to the 

Job Graph. 

 

 Channel types: For each edge connecting two 

vertices the user can determine a so-called 

channel type. Before executing a job, Nephele 

requires all edges of the original Job Graph to be 

replaced by a channel type. The channel type 

specifies how records are transported from one 

(sub)task to another at runtime. The choice of 

the channel type can have several implications 

on the entire job schedule including when and 

on what instance a (sub)task is executed. 

 

 Instance type: A (sub)task can be executed on 

different instance types which may be more or 

less suit able for the considered program. 

Therefore we have developed special 

annotations task developers can use to 

characterize the hardware requirements of their 
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code. However, a user who simply utilizes these 

annotated tasks can also overwrite the 

developer's suggestion and explicitly specify the 

instance type for a task in the Job Graph. If the 

user omits to augment the Job Graph with these 

specifications, Kneehole’s scheduler will apply 

default strategies which are discussed in the 

following subsection. Once the Job Graph is 

specified, the user can submit it to the Job 

Manager, together with the credentials he 

obtained from his cloud operator. The 

credentials are required since the Job Manager 

must allocate/deal locate instances from the 

cloud during the job execution on behalf of the 

user. 

 

VI. CONCLUSION  

In this paper, we have discussed the 

challenges and opportunities for efficient 

parallel data Processing in cloud environments 

and presented Nehalem, the first data processing 

framework to exploit the dynamic resource 

provisioning offered by today’s Iasi clouds. We 

have described Kneehole’s basic architecture 

and presented a performance comparison to the 

established data processing framework Hadoop. 

The performance evaluation gives a first 

impression on how the ability to assign specific 

virtual machine types to specific tasks of a 

processing job, as well as the possibility to 

automatically allocate/deal locate virtual 

machines in the course of a job execution, can 

help to improve the overall resource utilization 

and, consequently, reduce the processing cost. In 

Particular, we are interested in improving 

Nephele’s ability to adapt to resource overload 

or Underutilization during the job execution 

automatically. Our current profiling approach 

builds a valuable basis for this; however, at the 

moment the system still requires a reasonable 

amount of user annotations. In general, we think 

our work represents an important contribution to 

the growing field of Cloud computing services 

and points out exciting new opportunities in the 

field of parallel data processing. 
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