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ABSTRACT 

Authentication and Confidentiality can be realized by using RSA Signature algorithm .RSA is widely used in 

public-key cryptosystem. But running this algorithm needs lots of time and memory. So, running of this 

algorithm become difficulty low computational devices such as PCs to laptops, mobile phones, digital television 

sets, and so on.  

   

In this paper a RSA signature algorithm to fit for the devices with low computational power. The new 

signature algorithm is based on complex numeric operation function. This paper expounds the fundamental 

principles of RSA algorithm. The realization of RSA algorithm includes the generation of RSA cryptographic 

key and the encryption and decryption of data. By using RSA algorithm, we can use the private key of the 

sender to sign the plaintext and the public key of the receiver to encrypt. For the receiver, he can use his private 

key to decrypt and the public key of the sender to verify the signature. 
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I.  INTRODUCTION 

The emergence and development of data 

encryption technology provides an important 

guarantee for global Ecommerce, which makes 

the Internet based electrical tradeoff be feasible. 

The main purpose of digital signature 

technology in E-Commerce is guarantees the 

confidentiality, authentication, data integrity and 

undeniable of the information that transformed 

in insecurity and unreliable network. Until now, 

there are many digital signature algorithm 

established, in which the Hash, DSA and RSA 

are the common ones. The main restriction of 

Hash algorithm is the receiver must have a copy 

of the sender’s private key to verify the 

signature, so the encryption system is easy to be 

attacked and the signature can be forged. DSA 

(DigitalSignature Algorithm) is another common 

public key algorithm, but it has no data 

encryption function, it can only be used for 

digital signature. Compared with Hash 

algorithm, the private key for generating 

signature in RSA system only stores in user’s 

computer, it is more secure than Hash algorithm. 

While compared with DSA algorithm, RSA can 

either be used for data  

 

 

 

encryption or digital signature, which makes it, 

be the most widely used public key algorithm. In 

order to guarantee the security of a RSA system, 

the length of public and private keys is usually 

greater than 1024 bits in current commerce use, 

thus the key generation and data 

encryption/decryption process are all large 

number operations, which makes the speed of a 

RSA algorithm about 100 times slower than 

DES algorithm. The processing speed is a major 

flaw of RSA algorithm either for hardware or 

software implementation, so how to design an 

effective large number operation scheme is an 

important question [1,3]. In this paper, an n carry 

array based large number denotation approach is 

proposed to reduce the complexity of large 

number operation. The simulation results 

indicate that the speed of proposed algorithm has 

an efficient improvement over classic string 

based large number operation method. 

 

This paper is organized as follows in 

Section II, Exploring the details for RSA 

algorithms and it mathematical foundation. 

Section III, is presenting problem in RSA 

algorithm running in low computational devices. 

Then IV section, illustrate the details of a n carry 
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array storage structure and it followed by 

conclusion in section V. 

 

II. THE RSA ALGORITHM AND ITS 

MATHEMATICAL FOUNDATION 

A. The Mathematical Foundation for RSA 

Algorithm: The RSA digital signature has 

precise mathematical foundations, which are as 

follows: 

Theorem 1 (fundamental theorem of 

mathematics) Any positive integer a can be 

denoted as a=P1
a1 

..Pn
an

 

which P1 > P2 > P3 … > PT are all prime 

numbers, ai> 0. 

Theorem 2 (Euclid theorem) Any two integers a 

and b has a greatest common factor d, in which d 

can be expressed as the linear combination of a 

and b with integer coefficient, namely s, t ∈Z, 

which satisfies d = sa + tb . 

Theorem 3 (Fermat theorem) If p is a prime 

number, then for any positive integer a that 

prime to p,  a 
(p-1)

 ≡1 (mod p). 

Definition 1 (Euler function (n) ) When n = 1,  

ϕ (1) = 1, when n > 1, the value of ϕ (n) is the 

amount of positive integer that less than n and 

prime to n. 

Theorem 4 If p and q are all prime numbers and     

p≠ q, then  ϕ ( pq) =ϕ ( p)ϕ (q) = ( p −1)(q −1) 

Theorem 5 (Euler theorem) If integer a is co-

prime to integer n, then aᶲ
(n)

 ≡ (mod m). 

Above theorem have the following 3 deductions: 

(1) If p is prime number and n = p, then  

 a
(p-1)

 ≡ 1(mod p), namely the Fermat 

theorem. 

(2) a 
ϕ (n+1)

 ≡ a (mod p). 

(3) If n = pq, p and q are prime numbers 

and p≠ q, for  0<m<n, if (m, n) = 1, then 

( n ) 1 m m ϕ + ≡ (mod n), namely m
(p-

1)(q-1)+1
  ≡ (mod n). 

Above five theorems will be used in the 

feasibility proof  of RSA digital signature 

algorithm in the following section. 

Theorem 6 If p and q are prime numbers and p≠ 

q, 

rm ≡ 1 (mod ( p − 1)(q − 1)) , a is any positive 

integer, 

b ≡ am mod pq, c ≡ br mod pq, then c ≡ a mod 

pq. 

 

 

B. RSA Key Generation Algorithm: 

1. Generate two large random primes, p and 

q, of approximately equal size such that 

their product n = pq is of the required bit 

length, e.g. 1024 bits.  

2. Compute n = pq and (φ) phi = (p-1)(q-1) 

[Theorem 4]. 

3. Choose an integer e, 1 < e < phi, such 

that gcd(e, phi) = 1. [Theorem 2]. 

4. Compute the secret exponent d, 1 < d < 

phi, such that ed ≡ 1 (mod phi). 

[Theorem 6]. 

5. The public key is (n, e) and the private 

key is (n, d). Keep all the values d, p, q 

and phi secret. 

 n is known as the modulus. 

 e is known as the public 

exponent or encryption exponent 

or just the exponent. 

 d is known as the secret 

exponent or decryption 

exponent. 

C. Encryption Algorithm: 

Sender A does the following:-  

1. Obtains the recipient B's public key (n, 

e). 

2. Represents the plaintext message as a 

positive integer m  

3. Computes the ciphertext c = m
e
 mod n. 

4. Sends the ciphertext c to B. 

D. Decryption Algorithm: 

Recipient B does the following:-  

1. Uses his private key (n, d) to compute  

m = c
d
 mod n. 

2. Extracts the plaintext from the message 

representative m. 

E. Digital Signature Algorithm(DSA): 

Digital Signing 

Sender A does the following:-  

1. Creates a message digest of the 

information to be sent. 

2. Represents this digest as an integer m 

between 0 and n-1. 

3. Uses her private key (n, d) to compute 

the signature s = m
d
 mod n. 

4. Sends this signature s to the recipient, B. 

Signature Verification 

Recipient B does the following:-  

1. Uses sender A's public key (n, e) to 

compute integer v = s
e
 mod n. 
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2. Extracts the message digest from this 

integer. 

3. Independently computes the message 

digest of the information that has been 

signed. 

4. If both message digests are identical, the 

signature is valid. 

 

III.  COMPLEXITY OVER RUNNING 

RSA IN LOW COMPUTATIONAL 

DEVICES 

To improve usability of the RSA 

algorithm we need to increase the adaptability of 

the RSA algorithms to low computational 

devices and has to increase the security like 

confidentiality and authentication features. Why 

because present days e-commerce application 

and online banking transaction are running on 

low computational devices also. Here processing 

speed is very less compare to be super 

computers where we deploying servers to done 

high speed computation. This lead to be biggest 

problem to the RSA algorithm in term of 

reducing processing time. In RSA algorithm, to 

promise security levels we need bigger length of 

prime number ex: 1024 bit, more than that. So, it 

takes much processing time to complete those 

computations such as Generating Keys, 

Encryption, Decryption and DSA. This can be 

proved by current implementation of RSA 

algorithm in java programming language 

jdk1.7.0 versions packages java.math.BigInteger 

and java.security.SecureRandom having 

platform of, 

 

Hardware configuration: 

Processor  - Intel(R) Core(TM) 2  

Duo 2.20    GHzs. 

RAM       -  3.00GB 

Software Configuration: 

Running Platform - JDK1.6.0 

Operating system - Windows 7 

Ultimate  

32-bit OS. 

For that implementation time taking to the bit 

length  on above platform as  show in flowing 

graph 

 

Figure 1. Time variation graph with bit length. 

From the above graph time taking is varying 

based on bit length, but not in same order, from 

32bit to 1024 time is varying in sequential order 

after that 2048 to 8196 and so on. is in 

exponential order. Above time factor can rapidly 

various to Mobile phone where processing speed 

less than 1.00GHzs. To overcome this drawback 

there two possible solutions are they i.e 

1. Reduce the bit length. 

2. Invent new processing mechanisms. 

 

If we are looking for first possibility it will 

reduce system security, why because security is 

directly propositional to key length. So, we need 

to introduce an advanced computational 

mechanism that can solve our problem this 

computational mechanism we can implement 

using n carry array storage structure for large 

numbers .  

 

IV.  AN EFFICIENT IMPLEMENTATION 

OF RSA ALGORITHM FOR LOW 

COMPUTATIONAL DEVICES 

A. A n carry array storage structure for large 

number 

      The most import stage in RSA application is 

the key generation process, the selection of large 

prime number p and q to construct modulo n is 

crucial. In practice application, n must be large 

enough in order to guarantee the security of a 

RSA system. So the efficiency of a RSA system 

depends on the large number calculation speed. 

Most compilers support 64 bits integer operation 

at present, the integers calculated must equal or 

less than 64bits, namely 0xffffffffffffffff 

(18446744073709551615), which is far short 
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than the RSA algorithm requires. The classic 

large number storage method is string based, a 

large number is stored in a character type array, 

and then we can construct the corresponding 

function to perform add, subtract, multiply and 

divide operation based on the array. But the 

efficiency of this scheme is very low because for 

a 1024 bits number, the length of decimal form 

is about several hundreds, any numeric operation 

should do multiple nested loop on two long 

character array, besides a large extra space is 

needed to store the carry flag and middle results, 

which leads to the heavy system resource occupy 

and low efficiency [4,6].  

 

       This paper proposes an n carry array beads 

large number storage scheme. For a 32 bits 

system, n can be 2 powers of 32, namely 

0x10000000. If a 1024 bits large number 

converts to 0x10000000 carry, its length should 

be 32, the range of each digit is 0~0xffffffff 

rather than 0~1 or 0~9 Each digit of a n carry 

number just can be stored in a unsigned long 

integer type unit, so a 1024 bits large number 

can be stored in a unsigned long array with 32 

elements. Then we can implement numeric 

operation on the array, the loop time is reduced 

to 32, the calculation speed is greatly improved. 

 

B. Complex numeric operation function 

 In order to deal with the complex 

numeric mathematical operation efficiently, the 

following 3 functions are constructed in RSA 

system implemented. 

1 Miller-Rabin Function 

Function  : prime number 

judgment. 

Invoking method : N.Rab(). 

Return value : if N is prime, return 1, else    

     return 0. 

Algorithm description 

Step 1:Calculating M, which makes  

N = (2r ) M + 1 

Step 2: Selecting a random number A < N; 

Step 3: If AM mod N = 1 or for any i < r,  

A2i M mod N=N−1,then N passes the 

testing of random number A; 

Step 4:Testing N 5 times, each time with 

different    

A, if all the 5 times testing are passed, 

then N is prime. 

If N passes one testing, then the probability that 

N is not a prime number is 25%. If t times 

testing are passed, then the probability that N is 

not a prime number is (1/ 4)
t.
 When t = 5, the 

probability that N is a prime number is 99.99%. 

The worst case is that N contains smaller prime 

factor. In this function, 600 small prime numbers 

is used for testing, so the reliability is 

guaranteed. 

2  Extended Euclid Function 

Function : calculation the multiplicative      

                              inverse of integer N. 

Invoking method : N.Euc(A). 

Return value : Y2, which satisfies 

  NY2 mod A = 1. 

Algorithm description 

Step 1:  Let c = gcd(a, b) denotes the greatest  

             common factor of a and b; 

Step 2:  ( X1, X2 , X3 ) ←(1,0, A ) ;  

             ( Y1, Y2 , Y3 ) ←(0,1, N ); 

Step 3:  If Y3 = 1 then return Y3 = gcd(A, N ); no  

            inverse; 

Step 4:  If Y3 = 1 then return Y3 = gcd(A, N ); 

            Y2 = N -1 mod A; 

Step 5: Q=[X3/Y3]; 

Step 6:  

( T1, T 2 , T 3 ) ←( X1- QY1, X2 - QY2, X3 - 

QY3) ; 

Step 7:  ( X1, X2 , X3 ) ← ( Y1, Y2 , Y3 ); 

Step 8:  ( Y1, Y2 , Y3 ) ←( T1, T 2 , T 3 ) ; 

Step 9: go to step 2. 

 The variables used in the algorithm have 

the following relationships: 

AT1+ NT2= T3; AX1+ NX2= X3; AY1+ NY2= 

Y3; 

3 Montgomery Function 

Function  : calculation the modulo 

of              

  power. 

Invoking method: N.Mon (A, B). 

Return value : X = N
 A 

mod B. 

Algorithm description 

Step 1: X = 1; 

Step 2: If A is odd, then A = A −1,  

X = X * N mod B ; 

Step 3: If A is even, then A = A / 2， 

 N = N * N mod B ; 
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Step 4: Repeating step (2) and (3) to reduce 

 the order A, until A = 0; 

Step 5: The final calculated X is the result we 

want. 

V.  CONCLUSION 

The random RSA public and private key 

pair with arbitrary length can be generated 

effectively by using the java large number 

library design by the algorithm proposed in this 

paper. A 1024 bits RSA key can be generated 

within 4 seconds on common PC platform, while 

the encryption/decryption operation on data less 

than 1024 bits can be done within 2 seconds, the 

efficiency of RSA system is greatly improved, 

which provides important guarantees for 

implementation high security RSA algorithm 

with long keys on PC platform. 
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