
IPHV1I20012X

International Journal Of Advanced Research and Innovations Vol.1, Issue .2
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM JAN/2013 Page 114

AN ENHANCED RSA ALGORITHM FOR LOW

COMPUTATIONAL DEVICES
Maheswari Losetti

1
Kanaka Raju Gariga

2

1. Assistant Professor, Department of IT, Vardhaman College of Engineering, Hyderabad.

2. Associate Professor, Department of IT, Vardhaman College of Engineering,Hyderabad.

ABSTRACT

Authentication and Confidentiality can be realized by using RSA Signature algorithm .RSA is widely used in

public-key cryptosystem. But running this algorithm needs lots of time and memory. So, running of this

algorithm become difficulty low computational devices such as PCs to laptops, mobile phones, digital television

sets, and so on.

In this paper a RSA signature algorithm to fit for the devices with low computational power. The new

signature algorithm is based on complex numeric operation function. This paper expounds the fundamental

principles of RSA algorithm. The realization of RSA algorithm includes the generation of RSA cryptographic

key and the encryption and decryption of data. By using RSA algorithm, we can use the private key of the

sender to sign the plaintext and the public key of the receiver to encrypt. For the receiver, he can use his private

key to decrypt and the public key of the sender to verify the signature.

Key words- Low computational devices, Signature algorithms, RSA, Complex numeric operations.

I. INTRODUCTION

The emergence and development of data

encryption technology provides an important

guarantee for global Ecommerce, which makes

the Internet based electrical tradeoff be feasible.

The main purpose of digital signature

technology in E-Commerce is guarantees the

confidentiality, authentication, data integrity and

undeniable of the information that transformed

in insecurity and unreliable network. Until now,

there are many digital signature algorithm

established, in which the Hash, DSA and RSA

are the common ones. The main restriction of

Hash algorithm is the receiver must have a copy

of the sender’s private key to verify the

signature, so the encryption system is easy to be

attacked and the signature can be forged. DSA

(DigitalSignature Algorithm) is another common

public key algorithm, but it has no data

encryption function, it can only be used for

digital signature. Compared with Hash

algorithm, the private key for generating

signature in RSA system only stores in user’s

computer, it is more secure than Hash algorithm.

While compared with DSA algorithm, RSA can

either be used for data

encryption or digital signature, which makes it,

be the most widely used public key algorithm. In

order to guarantee the security of a RSA system,

the length of public and private keys is usually

greater than 1024 bits in current commerce use,

thus the key generation and data

encryption/decryption process are all large

number operations, which makes the speed of a

RSA algorithm about 100 times slower than

DES algorithm. The processing speed is a major

flaw of RSA algorithm either for hardware or

software implementation, so how to design an

effective large number operation scheme is an

important question [1,3]. In this paper, an n carry

array based large number denotation approach is

proposed to reduce the complexity of large

number operation. The simulation results

indicate that the speed of proposed algorithm has

an efficient improvement over classic string

based large number operation method.

This paper is organized as follows in

Section II, Exploring the details for RSA

algorithms and it mathematical foundation.

Section III, is presenting problem in RSA

algorithm running in low computational devices.

Then IV section, illustrate the details of a n carry

IPHV1I20012X

International Journal Of Advanced Research and Innovations Vol.1, Issue .2
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM JAN/2013 Page 115

array storage structure and it followed by

conclusion in section V.

II. THE RSA ALGORITHM AND ITS

MATHEMATICAL FOUNDATION

A. The Mathematical Foundation for RSA

Algorithm: The RSA digital signature has

precise mathematical foundations, which are as

follows:

Theorem 1 (fundamental theorem of

mathematics) Any positive integer a can be

denoted as a=P1
a1

..Pn
an

which P1 > P2 > P3 … > PT are all prime

numbers, ai> 0.

Theorem 2 (Euclid theorem) Any two integers a

and b has a greatest common factor d, in which d

can be expressed as the linear combination of a

and b with integer coefficient, namely s, t ∈Z,

which satisfies d = sa + tb .

Theorem 3 (Fermat theorem) If p is a prime

number, then for any positive integer a that

prime to p, a
(p-1)

 ≡1 (mod p).

Definition 1 (Euler function (n)) When n = 1,

ϕ (1) = 1, when n > 1, the value of ϕ (n) is the

amount of positive integer that less than n and

prime to n.

Theorem 4 If p and q are all prime numbers and

p≠ q, then ϕ (pq) =ϕ (p)ϕ (q) = (p −1)(q −1)

Theorem 5 (Euler theorem) If integer a is co-

prime to integer n, then aᶲ
(n)

 ≡ (mod m).

Above theorem have the following 3 deductions:

(1) If p is prime number and n = p, then

 a
(p-1)

 ≡ 1(mod p), namely the Fermat

theorem.

(2) a
ϕ (n+1)

 ≡ a (mod p).

(3) If n = pq, p and q are prime numbers

and p≠ q, for 0<m<n, if (m, n) = 1, then

(n) 1 m m ϕ + ≡ (mod n), namely m
(p-

1)(q-1)+1
 ≡ (mod n).

Above five theorems will be used in the

feasibility proof of RSA digital signature

algorithm in the following section.

Theorem 6 If p and q are prime numbers and p≠

q,

rm ≡ 1 (mod (p − 1)(q − 1)) , a is any positive

integer,

b ≡ am mod pq, c ≡ br mod pq, then c ≡ a mod

pq.

B. RSA Key Generation Algorithm:

1. Generate two large random primes, p and

q, of approximately equal size such that

their product n = pq is of the required bit

length, e.g. 1024 bits.

2. Compute n = pq and (φ) phi = (p-1)(q-1)

[Theorem 4].

3. Choose an integer e, 1 < e < phi, such

that gcd(e, phi) = 1. [Theorem 2].

4. Compute the secret exponent d, 1 < d <

phi, such that ed ≡ 1 (mod phi).

[Theorem 6].

5. The public key is (n, e) and the private

key is (n, d). Keep all the values d, p, q

and phi secret.

 n is known as the modulus.

 e is known as the public

exponent or encryption exponent

or just the exponent.

 d is known as the secret

exponent or decryption

exponent.

C. Encryption Algorithm:

Sender A does the following:-

1. Obtains the recipient B's public key (n,

e).

2. Represents the plaintext message as a

positive integer m

3. Computes the ciphertext c = m
e
 mod n.

4. Sends the ciphertext c to B.

D. Decryption Algorithm:

Recipient B does the following:-

1. Uses his private key (n, d) to compute

m = c
d
 mod n.

2. Extracts the plaintext from the message

representative m.

E. Digital Signature Algorithm(DSA):

Digital Signing

Sender A does the following:-

1. Creates a message digest of the

information to be sent.

2. Represents this digest as an integer m

between 0 and n-1.

3. Uses her private key (n, d) to compute

the signature s = m
d
 mod n.

4. Sends this signature s to the recipient, B.

Signature Verification

Recipient B does the following:-

1. Uses sender A's public key (n, e) to

compute integer v = s
e
 mod n.

IPHV1I20012X

International Journal Of Advanced Research and Innovations Vol.1, Issue .2
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM JAN/2013 Page 116

2. Extracts the message digest from this

integer.

3. Independently computes the message

digest of the information that has been

signed.

4. If both message digests are identical, the

signature is valid.

III. COMPLEXITY OVER RUNNING

RSA IN LOW COMPUTATIONAL

DEVICES

To improve usability of the RSA

algorithm we need to increase the adaptability of

the RSA algorithms to low computational

devices and has to increase the security like

confidentiality and authentication features. Why

because present days e-commerce application

and online banking transaction are running on

low computational devices also. Here processing

speed is very less compare to be super

computers where we deploying servers to done

high speed computation. This lead to be biggest

problem to the RSA algorithm in term of

reducing processing time. In RSA algorithm, to

promise security levels we need bigger length of

prime number ex: 1024 bit, more than that. So, it

takes much processing time to complete those

computations such as Generating Keys,

Encryption, Decryption and DSA. This can be

proved by current implementation of RSA

algorithm in java programming language

jdk1.7.0 versions packages java.math.BigInteger

and java.security.SecureRandom having

platform of,

Hardware configuration:

Processor - Intel(R) Core(TM) 2

Duo 2.20 GHzs.

RAM - 3.00GB

Software Configuration:

Running Platform - JDK1.6.0

Operating system - Windows 7

Ultimate

32-bit OS.

For that implementation time taking to the bit

length on above platform as show in flowing

graph

Figure 1. Time variation graph with bit length.

From the above graph time taking is varying

based on bit length, but not in same order, from

32bit to 1024 time is varying in sequential order

after that 2048 to 8196 and so on. is in

exponential order. Above time factor can rapidly

various to Mobile phone where processing speed

less than 1.00GHzs. To overcome this drawback

there two possible solutions are they i.e

1. Reduce the bit length.

2. Invent new processing mechanisms.

If we are looking for first possibility it will

reduce system security, why because security is

directly propositional to key length. So, we need

to introduce an advanced computational

mechanism that can solve our problem this

computational mechanism we can implement

using n carry array storage structure for large

numbers .

IV. AN EFFICIENT IMPLEMENTATION

OF RSA ALGORITHM FOR LOW

COMPUTATIONAL DEVICES

A. A n carry array storage structure for large

number

 The most import stage in RSA application is

the key generation process, the selection of large

prime number p and q to construct modulo n is

crucial. In practice application, n must be large

enough in order to guarantee the security of a

RSA system. So the efficiency of a RSA system

depends on the large number calculation speed.

Most compilers support 64 bits integer operation

at present, the integers calculated must equal or

less than 64bits, namely 0xffffffffffffffff

(18446744073709551615), which is far short

0

50000

100000

150000

200000

250000

300000

1 4 7 10 13

TIME
TAKING(ms)

BIT LENGTH

IPHV1I20012X

International Journal Of Advanced Research and Innovations Vol.1, Issue .2
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM JAN/2013 Page 117

than the RSA algorithm requires. The classic

large number storage method is string based, a

large number is stored in a character type array,

and then we can construct the corresponding

function to perform add, subtract, multiply and

divide operation based on the array. But the

efficiency of this scheme is very low because for

a 1024 bits number, the length of decimal form

is about several hundreds, any numeric operation

should do multiple nested loop on two long

character array, besides a large extra space is

needed to store the carry flag and middle results,

which leads to the heavy system resource occupy

and low efficiency [4,6].

 This paper proposes an n carry array beads

large number storage scheme. For a 32 bits

system, n can be 2 powers of 32, namely

0x10000000. If a 1024 bits large number

converts to 0x10000000 carry, its length should

be 32, the range of each digit is 0~0xffffffff

rather than 0~1 or 0~9 Each digit of a n carry

number just can be stored in a unsigned long

integer type unit, so a 1024 bits large number

can be stored in a unsigned long array with 32

elements. Then we can implement numeric

operation on the array, the loop time is reduced

to 32, the calculation speed is greatly improved.

B. Complex numeric operation function

 In order to deal with the complex

numeric mathematical operation efficiently, the

following 3 functions are constructed in RSA

system implemented.

1 Miller-Rabin Function

Function : prime number

judgment.

Invoking method : N.Rab().

Return value : if N is prime, return 1, else

 return 0.

Algorithm description

Step 1:Calculating M, which makes

N = (2r) M + 1

Step 2: Selecting a random number A < N;

Step 3: If AM mod N = 1 or for any i < r,

A2i M mod N=N−1,then N passes the

testing of random number A;

Step 4:Testing N 5 times, each time with

different

A, if all the 5 times testing are passed,

then N is prime.

If N passes one testing, then the probability that

N is not a prime number is 25%. If t times

testing are passed, then the probability that N is

not a prime number is (1/ 4)
t.
 When t = 5, the

probability that N is a prime number is 99.99%.

The worst case is that N contains smaller prime

factor. In this function, 600 small prime numbers

is used for testing, so the reliability is

guaranteed.

2 Extended Euclid Function

Function : calculation the multiplicative

 inverse of integer N.

Invoking method : N.Euc(A).

Return value : Y2, which satisfies

 NY2 mod A = 1.

Algorithm description

Step 1: Let c = gcd(a, b) denotes the greatest

 common factor of a and b;

Step 2: (X1, X2 , X3) ←(1,0, A) ;

 (Y1, Y2 , Y3) ←(0,1, N);

Step 3: If Y3 = 1 then return Y3 = gcd(A, N); no

 inverse;

Step 4: If Y3 = 1 then return Y3 = gcd(A, N);

 Y2 = N -1 mod A;

Step 5: Q=[X3/Y3];

Step 6:

(T1, T 2 , T 3) ←(X1- QY1, X2 - QY2, X3 -

QY3) ;

Step 7: (X1, X2 , X3) ← (Y1, Y2 , Y3);

Step 8: (Y1, Y2 , Y3) ←(T1, T 2 , T 3) ;

Step 9: go to step 2.

 The variables used in the algorithm have

the following relationships:

AT1+ NT2= T3; AX1+ NX2= X3; AY1+ NY2=

Y3;

3 Montgomery Function

Function : calculation the modulo

of

 power.

Invoking method: N.Mon (A, B).

Return value : X = N
 A

mod B.

Algorithm description

Step 1: X = 1;

Step 2: If A is odd, then A = A −1,

X = X * N mod B ;

Step 3: If A is even, then A = A / 2，

 N = N * N mod B ;

IPHV1I20012X

International Journal Of Advanced Research and Innovations Vol.1, Issue .2
ISSN Online: 2319 – 9253

Print: 2319 – 9245

IJARAI.COM JAN/2013 Page 118

Step 4: Repeating step (2) and (3) to reduce

 the order A, until A = 0;

Step 5: The final calculated X is the result we

want.

V. CONCLUSION

The random RSA public and private key

pair with arbitrary length can be generated

effectively by using the java large number

library design by the algorithm proposed in this

paper. A 1024 bits RSA key can be generated

within 4 seconds on common PC platform, while

the encryption/decryption operation on data less

than 1024 bits can be done within 2 seconds, the

efficiency of RSA system is greatly improved,

which provides important guarantees for

implementation high security RSA algorithm

with long keys on PC platform.

REFERENCES:

[1]. MJ Wiener. (1990), “Cryptanalysis of short

RSA secret exponents”, IEEE Transactions

on Information Theory, Vol 36, No 3, pp

553-558.

[2]. R Gennaro. (2000), “RSA-Based Undeniable

Signatures”, Journal of Cryptology, Vol 13,

No. 4, pp 397-416.

[3]. R Cramer, V Shoup. (2008), “Signature

schemes based on the strong RSA

assumption”, ACM Transactions on

Information and System Security, Vol 3, No

3, pp 161-185.

[4]. R Gennaro. (2008), “Robust and Efficient

Sharing of RSA Functions”, Journal of

Cryptology, Vol 13, No 2, pp 273-300.

[5]. D Boneh, M Franklin. (2001), “Efficient

generation of shared RSA keys”, Journal of

the ACM, Vol 48, No. 4, pp 702-722.

[6]. D Boneh, M Franklin. (2001), “Efficient

generation of shared RSA keys”, Journal of

the ACM, Vol 48, No. 4, pp 702-722.

Author’s Profile

Maheswari Losetti received the B.Tech

degree from JNTUH Hyderabad, the M.Tech

degree in computer science and engineering

from JNTUH Hyderabad.

She is currently an Assistant Professor

of computer science and engineering with

the Department of Computer Science and

engineering. Her current research interests in

networks include cloud computing,

information security, hacking.

Kanakaraju Gariga received the B.Tech

degree from JNTUH Hyderabad, the M.Tech

degree in computer science and engineering

from JNTUH Hyderabad.

He is currently an Associate Professor of

computer science and engineering with the

Department of Computer Science and

engineering. He current research interests in

service oriented operating systems include

networking, cloud computing, green

computing.

